
L19 – Graph Algorithms
7/23/24

Announcements

• QZ06 on LDOC
• Topics are L18-L20 (everything before LDOC)
• Can hold a review session tomorrow after class or on

Zoom later in the evening

• EX11 out, due LDOC
• After quiz on LDOC, the rest of class will be a

final exam review session

Outline

• Topo sort warmup
• Finish yesterday’s slides
• Move on to these

Find the topo sort(s)

Number Choice(s)

1

2 2, 3

3

4

5 5, 6

6

Bad SSSP code
void badSSSPunweighted(Vertex s) {

for each Vertex v { v.dist = -1; }
s.dist = 0;

for(int currDist=0; currDist<|V|; currDist++) {

for each Vertex v
if(v.dist == currDist) {
for each Vertex w adjacent to v
if(w.dist == -1) {
w.dist = currDist + 1;

}
}

}
}

For each
distance

For
each
node

1. Where is the inefficiency (or inefficiencies) (mentioned on
earlier slide)?

2. What is the best possible time for this simple algorithm
(unweighted SSSP)?

Get smarter

• Notice that once we assign a node (e.g., A) its
distance from source (e.g., 1), we do not work on
that node again

• However, “for each Vertex v” revisits A every time
the outer loop runs

• We can visit only the “rest of the nodes” by doing
a breadth-first search

Unweighted Shortest Path
Consider G and start node C

We will annotate each node N with an integer
This integer tells the shortest path from C to N
Start with 0 on C, since there is a path length 0 from C to C

A

DC

B

E

F G

0

Now visit vertices adjacent to C

If we can go from C to C in 0, then
we can go from C to A in 1

1

1

If we can go from C to C in 0, then
we can go from C to F in 1

Now visit adjacent to A, then F,

continue visiting vertices in breadth-
first order

Unweighted Shortest Path
Now consider vertices adjacent to A

B: C to A is 1, so C to B is 2

D: C to A is 1, so C to D is 2
Now visit vertices adjacent to F
No vertices adjacent to F

A

DC

B

E

F G

0

1

1

2

2

Now visit vertices adjacent to B
D: D is already done (in 2)
E: C to B is 2, so C to E is 3

3

Now visit vertices adjacent to … D

E: E is already done (in 3)

F: F is already done (in 1)

G: C to D is 2, so C to G is 3

3

Unweighted shortest path
improvement
• With breadth-first search (BFS), we now visit

each node once
• At each node, visit each adjacent out-edge
• Thus, O(|V| + |E|)
• Key is to efficiently find “next node” and avoid

redoing work using BFS
• We can implement BFS similarly to how we did it

for tree (remember that tree ⊂ graph)
Describe how we implement BFS on a graph?
Suppose the method signature is void
printBFS(Vertex start), and Vertex has a
getAdjacentVertices method.

Queue gives breadth-first
Let’s look at Queue

Q:

A

DC

B

E

F G

0

1

1

2

2 3

3

Put start node C on Q

C

Enq adjacent to C: A, F

A F

Deq C

Deq A

Deq F
Enq adjacent to A: B, DB D

Enq adjacent to F:
Deq B
Enq adjacent to B: D, E

E

Deq D
Enq adjacent to D: E, G

G

Deq E
Enq adjacent to E: G
Deq G
Enq adjacent to G: F

Q is
empty

Dijkstra’s algorithm
• Weighted shortest path

• Now use a priority queue to hold adjacent nodes

V known dist prev

A F ∞
B F ∞
C F ∞
D F ∞
E F ∞
F F ∞
G F ∞

A

DC

B

E

F G

4
11 3

2

3

4

2

6
1

8
5

0T _

PQ: (0,A)

2 A

1 A

(2,B) (1,D)(2,B) (2,B)

T
3 D

(2,B)(3,C)

(0,A) (2,B) (3,C)(1,D)

9 D

(2,B)(3,C)(9,F)

5 D

(2,B)(3,C)(5,G)(9,F)

4 D

(2,B)(3,C)(4,E)(5,G)(9,F) (3,C)(4,E)(5,G)(9,F)

T

3 B

(3,C)(3,E)(4,E)(5,G)(9,F) (3,E)(4,E)(5,G)(9,F)

T

8 C

(3,E)(4,E)(5,G)(8,F)(9,F) (4,E)(5,G)(8,F)(9,F)

(3,E)

T

(5,G)(8,F)(9,F) (8,F)(9,F)

(5,G)

T
6 G

(6,F)(8,F)(9,F) (8,F)(9,F)

(6,F)

T

(9,F)

DONE

Dijkstra’s algorithm questions

1. Why do we need the known column?
2. Why do we need the prev column? In

example, we only set its value but never read it.

Dijkstra’s algorithm answers

1. Only enqueue unknown nodes because we
already know the shortest distance to the
known nodes.
1. Also, another case - once a node and distance

(e.g., (3, E)) is in the output, that is the shortest
distance. However, prior to it being in the output,
it’s possible that there might be both (3, E) and (4,
E) in the queue already. (3, E) is outputted, but (4, E)
is still in the PQ. When dequeued, we see that E is
known, so we ignore it and continue the loop.

2. Use prev to trace path to start node. The
output has only the cost, not the path.

Dijkstra’s algorithm pseudocode

• Put start s node in table with dist of 0
• Put (0,s) in priority queue PQ
• Loop until PQ is empty:

• n=PQ.getMin().node; d=PQ.getMin().getValue();
PQ.delMin()

• Is n known? Back to loop (get another from PQ)
• Mark n as known
• For each unknown node a adjacent to n

• if a.dist>d+edge.weight then
• Update a.dist in table to be d+edge.weight
• Add a to PQ with priority d+edge.weight

• Trace the path itself using “prev” fields

EX11 overview

• Overview Vertex, Edge, Graph

Misc. EX11 notes

• Starter code contains Vertex distance and
implementation that supports keeping track of
distance from source. However, maybe you want
to add fields for tracking “prev” (prior vertex) or
“known”

• You can add the field(s) to the Vertex class or
handle it in the dijkstra() method (latter
preferred)

Minimum Spanning Tree

• For undirected graph G=(V,E)
• Spanning tree ST of G is a tree formed in edges in

E such that all vertices in V appear in ST
• Minimum Spanning Tree MST of G is a spanning

tree such that edge weights sum as small as
possible for G

• MST is
• M (no other ST has smaller edge weight sum)
• S (all nodes in G are in MST)
• T (tree, acyclic)

Example

A

DC

B

E

F

3

2

1

2

3

One Spanning Tree
Cost: 11

A

DC

B

E

F

2

1

2

1

2

Another
Spanning Tree

(now MST)
Cost: 8

How do we know 8 is
minimum?

A

DC

B

E

F

3

2

1

2

1

23

3

Graph G

All 1 edges are used
All 2 edges are used

Any other edge would
replace a 1 or 2 with 3 or

higher

(M)ST questions

1. ST has ___ edges? Use V and/or E
2. ST exists iff G is _______ ?

1. |V|-1
2. Connected

Applications

• Consider connecting |V| cities with wire/fiber.
How do we decide which cities to connect? MST

Trees?A

DC

B

E

F

2

1

2

1

2

A

D

C

B

E

F

2 1

21

2
Grab a node, let
the others “hang”
down from it

PropertiesSaw that a graph may have >1 ST
A graph may also have >1 MST

A

D

CB

E

1

2

3

3

3
54

2

F

MST: cost 11

MST: cost 11

A

D

CB

E

1

2

33

F

2

A

D

CB

E

1

3

32

F2

More properties

• In a weighted undirected graph G = (V, E)
• If all edge weights are equal (say cost c)

• Every ST is also an MST
• Because all ST have |V| - 1 edges, with c(|V| - 1) cost

• If each edge has a unique weight
• There is exactly 1 MST
• Informal proof by Kruskal’s algorithm, we’ll see that

Kruskal’s algorithm for MST builds MST based on
relative order of edge weights. Duplicate weights can
result in different MST’s, but all distinct => only that
one MST can be created

• More formal proof

https://math.stackexchange.com/a/924000/849129

Kruskal’s algorithm for MST

• Greedy algorithm
• Pick locally optimal solution at each step without

considering the entire “global” picture
• Build forest, merge the trees into one
1. Start with all nodes, no edges (initial forest)
2. Select edges in order of smallest weight up
3. Stop when all vertices have been included

(have connected graph)
4. Reject an edge if it creates cycle

• Could be costly

Example
Small examples easy
by inspection

7

4

1

43

2

5

6 7

3

2

4

5

1

6

10

8

1

2

1

43

2

5

6 7

1

1

43

2

5

6 7

1

1

Example
7

4

1

43

2

5

6 7

3

2

4

5

1

6

10

8

1

2

1

43

2

5

6 7

1

1

1

43

2

5

6 7

1

1

2
1

43

2

5

6 7

1

1

2

2

Example1

43

2

5

6 7

1

1

2

2

reject

reject
1

43

2

5

6 7

1

1

2

2

3
4

4

reject

Now connected (|V|-1=6
edges), so done

MST cost is 16

1

43

2

5

6 7

1

1

2

2

5

4
6

7

4

1

43

2

5

6 7

3

2

4

5

1

6

10

8

1

2

How to accomplish smallest edge
weights first? (PEW)
• O(|E| log |E|) to sort (in array) and O(1) to get next

• To get next, just advance the index, no need to
remove

• Or use priority queue (min-heap) with edge-
weight as priority

• O(|E|) to build (efficient)
• O(log |E|) to get next

• But we don’t usually do this |E| times

Prim’s algorithm for MST

• Another greedy algorithm
1. Start with empty tree T
2. Pick any node n, add to T
3. Examine edges (n, k) and add the one with

lowest weight
4. Now add min weight edge (u, v) where u is in

the tree, but v is not (reject cycles)
5. Repeat until all vertices are included

Example
1

4

1

1

4

2

1

2

1

1

43

2

1

2

2

7

4

reject

1

43

2

1

2

2

3

7

4

1

43

2

5

6 7

3

2

4

5

1

6

10

8

1

2

Example

All nodes in
so done

MST cost is 16

7

4

1

43

2

1

2

2

6
1

7

4

1

43

2

1

2

2

5

6

7

4

1

43

2

1

2

2

6
1

7

4

1

43

2

5

6 7

3

2

4

5

1

6

10

8

1

2

Greedy algorithm

• Pick locally optimal
solution at each step
without considering the
entire “global” picture

• In the graph, a greedy
algorithm would find the
local maximum at m but
miss the global max at M

• In the BT animation, a
greedy algorithm would
pick the local max 12
and miss the global max
99

• Both examples from
Wikipedia

Dijkstra’s greedy algorithm
questions
1. Is Dijkstra’s algorithm greedy?
2. Argue why Dijkstra’s algorithm is greedy.

Are greedy algorithms always
correct?
• The ones we’ve learned so far are, but in general

no
• Consider coin-change-making problem

• Given coin denominations {1, 5, 10, 20}, make change
for 36 using the fewest number of coins using the
obvious greedy algorithm that you already know

• Now try with {5, 10, 20, 25} to make 40
• Is the greedy algorithm’s output correct?

• Correct solution should use dynamic
programming (DP)

• Topic for tomorrow

	L19 – Graph Algorithms
	Announcements
	Outline
	Find the topo sort(s)
	Bad SSSP code
	Get smarter
	Unweighted Shortest Path
	Unweighted Shortest Path
	Unweighted shortest path improvement
	Queue gives breadth-first
	Dijkstra’s algorithm
	Dijkstra’s algorithm questions
	Dijkstra’s algorithm answers
	Dijkstra’s algorithm pseudocode
	EX11 overview
	Misc. EX11 notes
	Minimum Spanning Tree
	Example
	(M)ST questions
	Applications
	Trees?
	Slide Number 22
	More properties
	Kruskal’s algorithm for MST
	Example
	Example
	Example
	How to accomplish smallest edge weights first? (PEW)
	Prim’s algorithm for MST
	Example
	Example
	Greedy algorithm
	Dijkstra’s greedy algorithm questions
	Are greedy algorithms always correct?

