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Announcements

• QZ06 on LDOC
• Topics are L18-L20 (everything before LDOC)
• Can hold a review session tomorrow after class or on 

Zoom later in the evening

• EX11 out, due LDOC
• After quiz on LDOC, the rest of class will be a 

final exam review session



Outline

• Topo sort warmup
• Finish yesterday’s slides
• Move on to these



Find the topo sort(s)

Number Choice(s)

1

2 2, 3

3

4

5 5, 6

6



Bad SSSP code
void badSSSPunweighted( Vertex s ) {

for each Vertex v { v.dist = -1; } 
s.dist = 0;

for( int currDist=0; currDist<|V|; currDist++ ) {

for each Vertex v 
if( v.dist == currDist ) {
for each Vertex w adjacent to v
if( w.dist == -1 ) {
w.dist = currDist + 1;

}
}

}
}

For each 
distance

For 
each 
node

1. Where is the inefficiency (or inefficiencies) (mentioned on 
earlier slide)?

2. What is the best possible time for this simple algorithm 
(unweighted SSSP)?



Get smarter

• Notice that once we assign a node (e.g., A) its 
distance from source (e.g., 1), we do not work on 
that node again

• However, “for each Vertex v” revisits A every time 
the outer loop runs

• We can visit only the “rest of the nodes” by doing 
a breadth-first search



Unweighted Shortest Path
Consider G and start node C

We will annotate each node N with an integer
This integer tells the shortest path from C to N
Start with 0 on C, since there is a path length 0 from C to C

A

DC

B

E

F G

0

Now visit vertices adjacent to C

If we can go from C to C in 0, then 
we can go from C to A in 1

1

1

If we can go from C to C in 0, then 
we can go from C to F in 1

Now visit adjacent to A, then F, 

continue visiting vertices in breadth-
first order



Unweighted Shortest Path
Now consider vertices adjacent to A

B: C to A is 1, so C to B is 2

D: C to A is 1, so C to D is 2
Now visit vertices adjacent to F
No vertices adjacent to F

A

DC

B

E

F G

0

1

1

2

2

Now visit vertices adjacent to B
D: D is already done (in 2)
E: C to B is 2, so C to E is 3

3

Now visit vertices adjacent to … D

E: E is already done (in 3)

F: F is already done (in 1)

G: C to D is 2, so C to G is 3

3



Unweighted shortest path 
improvement
• With breadth-first search (BFS), we now visit 

each node once
• At each node, visit each adjacent out-edge
• Thus, O(|V| + |E|)
• Key is to efficiently find “next node” and avoid 

redoing work using BFS
• We can implement BFS similarly to how we did it 

for tree (remember that tree ⊂ graph)
Describe how we implement BFS on a graph? 
Suppose the method signature is void 
printBFS(Vertex start), and Vertex has a 
getAdjacentVertices method.



Queue gives breadth-first
Let’s look at Queue 

Q: 

A

DC

B

E

F G

0

1

1

2

2 3

3

Put start node C on Q

C

Enq adjacent to C:  A, F

A F

Deq C

Deq A

Deq F
Enq adjacent to A:  B, DB D

Enq adjacent to F:
Deq B
Enq adjacent to B:  D, E

E

Deq D
Enq adjacent to D:  E, G

G

Deq E
Enq adjacent to E:  G
Deq G
Enq adjacent to G:  F

Q is 
empty



Dijkstra’s algorithm
• Weighted shortest path

• Now use a priority queue to hold adjacent nodes

V  known dist      prev
----------------------------
A  F     ∞
B  F     ∞
C  F     ∞
D  F     ∞
E  F     ∞
F  F     ∞
G  F     ∞

A

DC

B

E

F G

4
11 3

2

3

4

2

6
1

8
5

0T _

PQ:   (0,A)   

2 A

1 A

(2,B)   (1,D)(2,B)   (2,B)   

T
3 D

(2,B)(3,C)   

(0,A) (2,B) (3,C)(1,D)

9 D

(2,B)(3,C)(9,F)   

5 D

(2,B)(3,C)(5,G)(9,F)   

4 D

(2,B)(3,C)(4,E)(5,G)(9,F)   (3,C)(4,E)(5,G)(9,F)   

T

3 B

(3,C)(3,E)(4,E)(5,G)(9,F)   (3,E)(4,E)(5,G)(9,F)   

T

8 C

(3,E)(4,E)(5,G)(8,F)(9,F)   (4,E)(5,G)(8,F)(9,F)   

(3,E)

T

(5,G)(8,F)(9,F)   (8,F)(9,F)   

(5,G)

T
6 G

(6,F)(8,F)(9,F)   (8,F)(9,F)   

(6,F)

T

(9,F)   

DONE



Dijkstra’s algorithm questions

1. Why do we need the known column?
2. Why do we need the prev column? In 

example, we only set its value but never read it.



Dijkstra’s algorithm answers

1. Only enqueue unknown nodes because we 
already know the shortest distance to the 
known nodes.
1. Also, another case - once a node and distance 

(e.g., (3, E)) is in the output, that is the shortest 
distance. However, prior to it being in the output, 
it’s possible that there might be both (3, E) and (4, 
E) in the queue already. (3, E) is outputted, but (4, E) 
is still in the PQ. When dequeued, we see that E is 
known, so we ignore it and continue the loop.

2. Use prev to trace path to start node. The 
output has only the cost, not the path.



Dijkstra’s algorithm pseudocode

• Put start s node in table with dist of 0
• Put (0,s) in priority queue PQ
• Loop until PQ is empty:

• n=PQ.getMin().node; d=PQ.getMin().getValue(); 
PQ.delMin()

• Is n known? Back to loop (get another from PQ) 
• Mark n as known  
• For each unknown node a adjacent to n 

• if a.dist>d+edge.weight then
• Update a.dist in table to be d+edge.weight
• Add a to PQ with priority d+edge.weight

• Trace the path itself using “prev” fields



EX11 overview

• Overview Vertex, Edge, Graph



Misc. EX11 notes

• Starter code contains Vertex distance and 
implementation that supports keeping track of 
distance from source. However, maybe you want 
to add fields for tracking “prev” (prior vertex) or 
“known”

• You can add the field(s) to the Vertex class or 
handle it in the dijkstra() method (latter 
preferred)



Minimum Spanning Tree

• For undirected graph G=(V,E)
• Spanning tree ST of G is a tree formed in edges in 

E such that all vertices in V appear in ST
• Minimum Spanning Tree MST of G is a spanning 

tree such that edge weights sum as small as 
possible for G

• MST is
• M (no other ST has smaller edge weight sum)
• S (all nodes in G are in MST)
• T (tree, acyclic)



Example

A

DC

B

E

F

3

2

1

2

3

One Spanning Tree
Cost: 11

A

DC

B

E

F

2

1

2

1

2

Another 
Spanning Tree 

(now MST)
Cost: 8

How do we know 8 is 
minimum?

A

DC

B

E

F

3

2

1

2

1

23

3

Graph G

All 1 edges are used
All 2 edges are used

Any other edge would 
replace a 1 or 2 with 3 or 

higher



(M)ST questions

1. ST has ___ edges? Use V and/or E
2. ST exists iff G is _______ ?

1. |V|-1
2. Connected



Applications

• Consider connecting |V| cities with wire/fiber. 
How do we decide which cities to connect? MST



Trees?A

DC

B

E

F

2

1

2

1

2

A

D

C

B

E

F

2 1

21

2
Grab a node, let 
the others “hang” 
down from it



PropertiesSaw that a graph may have >1 ST
A graph may also have >1 MST

A

D

CB

E

1

2

3

3

3
54

2

F

MST: cost 11

MST: cost 11

A

D

CB

E

1

2

33

F

2

A

D

CB

E

1

3

32

F2



More properties

• In a weighted undirected graph G = (V, E)
• If all edge weights are equal (say cost c)

• Every ST is also an MST
• Because all ST have |V| - 1 edges, with c(|V| - 1) cost

• If each edge has a unique weight
• There is exactly 1 MST
• Informal proof by Kruskal’s algorithm, we’ll see that 

Kruskal’s algorithm for MST builds MST based on 
relative order of edge weights. Duplicate weights can 
result in different MST’s, but all distinct => only that 
one MST can be created

• More formal proof

https://math.stackexchange.com/a/924000/849129


Kruskal’s algorithm for MST

• Greedy algorithm
• Pick locally optimal solution at each step without 

considering the entire “global” picture
• Build forest, merge the trees into one
1. Start with all nodes, no edges (initial forest)
2. Select edges in order of smallest weight up
3. Stop when all vertices have been included 

(have connected graph)
4. Reject an edge if it creates cycle

• Could be costly



Example
Small examples easy 
by inspection
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Example
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Example1

43

2

5

6 7

1

1

2

2

reject

reject
1

43

2

5

6 7

1

1

2

2

3
4

4

reject

Now connected (|V|-1=6 
edges), so done

MST cost is 16 
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How to accomplish smallest edge 
weights first? (PEW)
• O(|E| log |E|) to sort (in array) and O(1) to get next

• To get next, just advance the index, no need to 
remove

• Or use priority queue (min-heap) with edge-
weight as priority

• O(|E|) to build (efficient)
• O(log |E|) to get next

• But we don’t usually do this |E| times



Prim’s algorithm for MST

• Another greedy algorithm
1. Start with empty tree T
2. Pick any node n, add to T
3. Examine edges (n, k) and add the one with 

lowest weight
4. Now add min weight edge (u, v) where u is in 

the tree, but v is not (reject cycles)
5. Repeat until all vertices are included



Example
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Example

All nodes in 
so done

MST cost is 16 
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Greedy algorithm

• Pick locally optimal 
solution at each step 
without considering the 
entire “global” picture

• In the graph, a greedy 
algorithm would find the 
local maximum at m but 
miss the global max at M

• In the BT animation, a 
greedy algorithm would 
pick the local max 12 
and miss the global max 
99

• Both examples from 
Wikipedia



Dijkstra’s greedy algorithm 
questions
1. Is Dijkstra’s algorithm greedy?
2. Argue why Dijkstra’s algorithm is greedy.



Are greedy algorithms always 
correct?
• The ones we’ve learned so far are, but in general 

no
• Consider coin-change-making problem

• Given coin denominations {1, 5, 10, 20}, make change 
for 36 using the fewest number of coins using the 
obvious greedy algorithm that you already know

• Now try with {5, 10, 20, 25} to make 40
• Is the greedy algorithm’s output correct?

• Correct solution should use dynamic 
programming (DP)

• Topic for tomorrow
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