
L18 – Graphs
7/22/24

Announcements

• EX10 due tomorrow 7/23
• EX11 releases tonight, due LDOC
• QZ06 on Wednesday or Thursday (tentative)

Bipartite question

• Prove that trees (no parent pointer) are bipartite
using induction

• Base case: single node is bipartite
• Inductive case: assuming tree with n nodes is

bipartite, show that tree with n+1 nodes (i.e., add
a leaf) is bipartite

Modeling with graphs
bost

nyc

dc

atl

char

chi

denv

seatt

sfr

la

dall

70
30

20

10
25

40 20

30
50

70

40
30

15
20

25

2090

10 5

10

20

50

20

10

Modeling with graphs, cont.

• What is the min cost from NYC to LA?
• NYC –5> DC –10> Char –30> Dall –20> Denv –40>

LA
• 105
• We’ll learn some algorithms for determining this

• From any city, can I get to any other city?
• I.e., is graph strongly connected?

Modeling with graphs, cont.

301

311

210 426

520

431

455283

493
524

523

533

535 550

541

(numbers are outdated)

Modeling with graphs, cont.

• FSM (finite state automaton) – simple computer
• Details in 455

• This one checks if a string has an even number of 0’s
• Vertices are “states”
• Numbers on edges are not weights, they’re input

characters

• Find (cmd/ctrl + F) implemented with regex,
implemented with FSM

Modeling with graphs, cont.

• Graph of Wikipedia
• Each color is a community the author found, of which

there are 28 (e.g., politics & law, football (soccer),
video games)

https://www.youtube.com/watch?v=JheGL6uSF-4

Graph representation

• 2 main approaches
• Adjacency matrix

• Edge information tracked in 2D array
• AM[i][j] represents an edge from vertex i to vertex j

• Adjacency list
• Each vertex object maintains a list of edge objects

Adjacency matrix (unweighted)

• For N nodes, use N x N array of Boolean
• If AM[a,b] then (a,b)∈E

• Edge from A to B

A B C D

A

B

C

D

s
o
u
r
c
e

destination

T

TTT
A

CB

D

FFFF

F

F

F FF

FF T

Adjacency matrix (weighted)

• Array elements now integer or float

A

B

C

D

s
o
u
r
c
e

destination

4

2

263
A

CB

D
2

2

3 46

00

0 0 0 0

0

0 0 0

0

A B C D

Adjacency matrix performance

• Pros and cons in terms of time and space
complexity?

• Use V = vertices, E = edges, |V| = # vertices, |E| = #
edges

1. How fast to determine if there’s an edge from A to
B?

2. How fast to find all edges of A?
3. Amount of space used?

1. O(1)
2. O(|V|)
3. O(|V|2)

Adjacency matrix space problem

• Problem is wasted space

• 64 spaces, 55 not used
• O(|V|2) space
• If |E| << |V|2, the graph is sparse
• If |E| ≈ |V|2, the graph is dense

8 nodes

T

T

T

T

T

T

T

T

T

Sparse or dense? Traffic example

• Let V be street intersections
• Let E be streets between V
• Model as digraph

• Undirected might make more sense

• Is it sparse or dense?

Traffic example explanation

• Each node has maximum 4 edges out
• Nodes on the perimeter have fewer than 4

• |E| ≈ 4|V|
• For large V, |E| << |V|2

• Suppose there are 3000 intersections
• Matrix has 30002 = 9000000 cells
• Number of cells used is 4(3000) = 12000

• 0.13% used

• Sparse

Sparse or dense?

• 1538 nodes, 8032 edges
• 15382 = 2365444
• 8032 << 2365444
• Sparse

Complete graph density

• Complete graphs are always dense
• Recall that in a complete graph, node V has

edges to every node but itself
• Clearly dense
• The math:

• Complete undirected graph has
𝑣𝑣
2 = 𝑣𝑣 𝑣𝑣−1

2
 edges

• O(|V|2)

K4

K16

K100

K4 0 1 2 3
0 F T T T
1 T F T T
2 T T F T
3 T T T F

Adjacency matrix of undirected
graph
• Represent adj. matrix of complete graph K4 as

matrix where 1 denotes edge exists

•

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

• What is a matrix property that any adjacency
matrix of an undirected graph has?

• Symmetric
• A = AT

• For every i, j, aij = aji

Adjacency matrix summary

• Easy to code
• Usually wastes most of its space
• When sparse, finding adjacent nodes is

expensive
• O(|V|) to find only a few adjacent vertices

Adjacency list

• Keep list of vertices
• Each vertex has a list of adjacent vertices

• Remind you of anything we learned recently?

A

CB

D

A

B

D

C

B C D

C

B

Adjacency list typing

• List of lists
• List<List<Vertex>>
• Get edges of vertex 0 with al.get(0)

• HashMap of lists
• HashMap<String, List<Vertex>>
• Suppose we represent node a with the String “a”
• Then get its edges with al.get(“a”)

• Array of lists
• List<Vertex>[]
• al[0]

• Pros and cons?

Adjacency list (weighted)

• If edges are weighted, store the weight in the cell
• This example uses array for vertices and linked

list for edges
• What would HashMap for vertices look like?

1

A

C

B
D

3

5
3

12

E

6

4

A

B

D

C

0

1

2

3

4 E

2 1 3432

12

3 531

6 401

Adjacency list performance

1. Amount of space used in terms of V and/or E?
2. Worst-case, find all vertices adjacent to some

node v?
1. Normally O(|list for v|)

1. O(|V| + |E|)
1. We call this “linear” for graphs
2. “size” of graph is |V| + |E|

2. O(|V|)
1. Complete graph

Adjacency list efficiency

• Need a HashMap for vertices
• See Adjacency list typing slide

• Many graph algorithms will be inefficient without
• If you need to find a vertex, cannot afford to do O(|V|)

search through all vertices list without making many
algorithms become quadratic or worse

• May want similar hash structure for edges
• E.g., HashMap<String, HashMap<String, Vertex>>
• If a and b are nodes, to see if b is adjacent to a, do
map.get(“a”).containsKey(“b”)

• O(1)
• Inner LinkedList for edges is instead O(|V|)

• To get all edges of a, use a for-each loop, keySet(),
etc., on map.get(“a”)

Topological sort (topo sort)

• First graph algorithm
• Computed for DAG G
• An ordering of all vertices in G such that if (u,v) ∈

E, then u<v in the sort (u precedes v in the
sequence)

• Every DAG has at least 1 topo sort
• Some have more than 1
• If a graph has a cycle, then it does not have a

topo sort (why?)

Examples
A

CB

only 1 topo sort
A, C, B

Check:
(A,B) in E… A<B in sort
(A,C) in E… A<C in sort
(C,B) in E… C<B in sort

A

CB

no topo sort
Note that every vertex

has at least one in-edge
and one out-edge

Note that A has no in-edges,
 and B has no out-edges

• In-degree of vertex b
• Number of edges coming to b
• Number of edges (a, b) ∈ E for distinct a
• Number of vertices b is adjacent to

Examples

A

CB

D

only 1 topo sort
A, D, C, B

3 topo sorts
A, B, D, C
A, D, C, B
A, D, B, C

A

CB

D

Properties
A

CB
A

CB

X Y

If all vertices have both
in-edges and out-edges,
there is no Topo Sort

Not sufficient: If there is
some vertex with no in-edge
and some vertex with no out-
edge, there may still be no
Topo Sort (may or may not)

Necessary: If a graph has a Topo
Sort, there is some vertex with no

in-edge and some vertex with no
out-edge

A

CB

D

Necessary and
sufficient
meaning

Topo sort -> at least one vertex with no in-edge and
 at least one vertex with no out-edge

https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity
https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity
https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity

Uses
Use topo sort for

structures like course
pre-requisites

The sorts give OK orders
of classes to take

401

411

410 426

520

431

455283

493
524

523

533

535 550

541

283, 401, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 520, 523

401, 283, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 520, 523

401, 283, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 523, 520

etc.

Numerous topological sorts

Outdated numbers, but good example

Algorithm to find a topo sort

• We’ll use this graph for our example

1

43

2

5

6 7 𝑺𝑺𝟏𝟏: 1, 2, 5, 4, 3, 7, 6

𝑺𝑺𝟐𝟐: 1, 2, 5, 4, 7, 3, 6

Two topo sorts

Algorithm

• Find a topo sort in O(|V| + |E|) (linear time)
• Assume G = (V, E) was built using adjacency list and

that in-degree of each node was stored during the
build

1. Any nodes with in-degree 0? If no, then cycle,
done.

2. Pick any node v with in-degree 0. Put v into the TS
3. Decrement in-degree of any node w where (v, w) ∈

E (essentially remove v and its out-edges from
graph)

4. More nodes? Goto step 1, else done

Execute on Example1

43

2

5

6 7

3

0

2

3 2

1

1

Node 1 has in-deg 0 so put it into TS

Remove node 1, out edges, and redo in-
degrees

43

2

5

6 7

21

3 2

1

0

43 5

6 7

11

3 2

0

Node 2 has in-deg 0 so put it into TS

TS: 1 , 2

Remove node 2, out edges, and redo in-
degrees

Execute on Example

Node 5 has in-deg 0 so put it into TS

Remove node 5, out edges, and redo in-degrees

43 5

6 7

11

3 2

0

Node 4 has in-deg 0 so put it into TS

TS: 1 , 2

Remove node 4, out edges, and redo in-degrees

, 5 , 4

43

6 7

01

3 1

3

6 7

0
2 0

Nodes 3 and 7 have in-deg 0 so pick one, put in TS

, 7

3

6

0
1

Node 3 into TS, remove it

6
0

, 3 , 6

Node 6 into TS,
remove, done

What happens with cycles?

TS:

There are no vertices with
in-degree 0

Can’t even start this one

A

CB

D

1

1 2

1

What happens with cycles?
A

B

D

C

E

10

2

1

2

TS:

A

B

D

E

0

2

1

2

C

B

D

E
1

1

1

A

There are no vertices with
in-degree 0

However there are unprocessed nodes
So, we have found cycle(s)

So, no Topo Sort possible

Length is not |V|, invalid

Try on this graph (several topo
sorts)

4

1

7

5

9

2

0

8

6
10

3

0

0

1

2

1

2

3

2

2
3

2

Topo Sort:
 1 choice: 0, 1
 5 choice: 0, 5
 0 choice: 0, 8
 8
 2
 7
 6
 3
 4
 10 choice: 9, 10
 9

Topo sort algorithm analysis

• O(|V| + |E|)
• Examine and remove each vertex, each removal O(1) so

O(|V|)
• While examining, operate on each out edge once by

decrementing in-degree of destination vertex, so O(|E|)

• This is what we hope for, actually depends on
several factors

• Remove each vertex O(1)
• Decrement in-degree of destination vertex O(1)
• Find vertex with in-degree 0 O(1)

• If you have to do a linear search through all vertices, then
O(|V|), and the algorithm’s complexity is then O(|V|2 + |E|)

Efficient topo sort impl
• Compute initial in-degree of each vertex while graph is built

• O(|E|)
• While building graph, while making the entry for vertex u, for each of its

edges (u, vi), access Vertex vi in O(1) and increment its in-degree (store it as
field in Vertex class) in O(1)

• Scan through all vertices and identify all with in-degree 0, add to
queue

• O(|V|)
• While the 0-in-degree queue is not empty

• Take a vertex off the queue and add it to the topo list
• Examine each edge and “remove” it by decreasing the in-degree associated

with the edge’s destination
• If in-degree of a destination vertex falls to 0, add it to the 0-in-degree queue

• When 0-in-degree queue is empty, if topo list does not contain |V|
vertices, then must have found a cycle, no topo sort possible

• Otherwise, topo list is valid
• Now O(|V| + |E|)

Shortest path
• Many problems require us to find shortest path from vertex v to vertex w

• Simple example, road navigation

• Look at 2 situations
• Digraph with unweighted edges

• Weight 1 on all (want shortest path length)

• Digraph with weighted edges
• Want lowest cost

7

4

A

DC

B

E

F G

3

2

4

5
1

6

10

8

1

2
Weighted: shortest path is
A, D, G, F with a cost of 6

Going from A to F

Unweighted: shortest path is
A, D, F with a length/cost of 2

Digraph Example

Unweighted shortest path

• Input: Unweighted digraph G = (V, E), start vertex
s where s∈V

• Output: shortest path(s) from s to every other
vertex

• Unweighted algorithm in O(|V|2) fairly simple
• Adding weights complicates things, Dijkstra’s

algorithm

Bad unweighted shortest path

• Recognize that no shortest path can be longer
than |V| - 1

• Run a loop with len going from 0 to |V| - 1
(inclusive)

• In loop, go through all nodes and when we find
one with distance “len”, we mark all unmarked
adjacent nodes with distance “len + 1”

• Double nested loops O(|V| - 1) * O(|V|) is O(|V|2)

(Bad) Unweighted Shortest Path

A

DC

B

E

F G

0

1

1

C is marked 0 to start

currDist = 0,
find all nodes marked 0

We find C, and mark
adjacencies 0+1

currDist = 1,
find all nodes marked 1

We find A, and mark
adjacencies 1+1

2

2

We find F, no adjacencies

currDist = 2,
find all nodes marked 2

We find B, and mark unmarked
adjacencies 2+1

3

We find D, and mark unmarked
adjacencies 2+1

3

Output is a graph with each node being
labeled with the shortest distance from C

	L18 – Graphs
	Announcements
	Bipartite question
	Modeling with graphs
	Modeling with graphs, cont.
	Modeling with graphs, cont.
	Modeling with graphs, cont.
	Modeling with graphs, cont.
	Graph representation
	Adjacency matrix (unweighted)
	Adjacency matrix (weighted)
	Adjacency matrix performance
	Adjacency matrix space problem
	Sparse or dense? Traffic example
	Traffic example explanation
	Sparse or dense?
	Complete graph density
	Adjacency matrix of undirected graph
	Adjacency matrix summary
	Adjacency list
	Adjacency list typing
	Adjacency list (weighted)
	Adjacency list performance
	Adjacency list efficiency
	Topological sort (topo sort)
	Examples
	Examples
	Properties
	Uses
	Algorithm to find a topo sort
	Algorithm
	Execute on Example
	Execute on Example
	What happens with cycles?
	What happens with cycles?
	Try on this graph (several topo sorts)
	Topo sort algorithm analysis
	Efficient topo sort impl
	Shortest path
	Unweighted shortest path
	Bad unweighted shortest path
	(Bad) Unweighted Shortest Path

