L18 — Graphs

7/22/24

Announcements

* EX10 due tomorrow 7/23
* EX11 releases tonight, due LDOC
* QZ06 on Wednesday or Thursday (tentative)

Bipartite guestion

* Prove that trees (no parent pointer) are bipartite
using induction

* Base case: single node is bipartite

* Inductive case: assuming tree with n nodes is
bipartite, show that tree with n+1 nodes (i.e., add

a leaf) is bipartite

Modeling with graphs

20

sfr

10

la

bost
seatt
20_»(0
70 chi 20 nyc
10
50
30 10 . 5
denv 50
20 ‘ 70 dc
25 10
>)
char
15
20
90 ‘ 20

dall ‘

25 atl

Modeling with graphs, cont.

e What is the min cost from NYC to LA?

e NYC-5> DC-10> Char-30> Dall-20> Denv -40>
LA

* 105
 We’ll learn some algorithms for determining this

* From any city, can | get to any other city?
* |l.e., Is graph strongly connected?

Modeling with graphs, cont.

Modeling with graphs, cont.

1 1

) 0
(-0
!
—ql eveu},l) (odd

N’ N
4\“&____ -
0

N

J/",a-

* FSM (finite state automaton) — simple computer
* Details in 455

* This one checks if a string has an even number of O’s

* \ertices are “states”

* Numbers on edges are not weights, they’re input
characters

* Find (cmd/ctrl + F) implemented with regex,
implemented with FSM

Modeling with graphs, cont.

* Graph of Wikipedia

* Each color is a community the author found, of which
there are 28 (e.g., politics & law, football (soccer),
video games

https://www.youtube.com/watch?v=JheGL6uSF-4

Graph representation

* 2 main approaches

* Adjacency matrix
* Edge information tracked in 2D array
* AMIi][j] represents an edge from vertex i to vertex |

* Adjacency list
* Each vertex object maintains a list of edge objects

Adjacency matrix (unweighted)

* For N nodes, use N x N array of Boolean

* If AM[a,b] then (a,b)EE
* EdgefromAtoB

destination
A B C D

Al FI T T T

B| F F | F F

O O T C 0O O

Adjacency matrix (weighted)

* Array elements now integer or float

destination

A B C D

Al O 3 6 2

B| O 0 0 0

® O T C 0 O

Adjacency matrix performance

* Pros and cons in terms of time and space
complexity?
* Use V =vertices, E = edges, |V| = # vertices, |E| =#
edges
1. How fast to determine if there’s an edge from A to
B?
2. How fastto find all edges of A?
3. Amount of space used?

1. 0(1)
2. O(|V])
3. O(|V]?)

Adjacency matrix space problem

* Problem is wasted space

* 64 spaces, 55 not used

* O(|V|?) space v

* |If |E| << |V|?, the graph is sparse
* |If |E| = |V|?, the graph is dense

Sparse or dense? Traffic example

e LetV be street intersections
L et E be streets between V
* Model as digraph

* Undirected might make more sense

* |s it sparse or dense? @
\N—"

Traffic example explanation

* Each node has maximum 4 edges out
* Nodes on the perimeter have fewer than 4

* [E[= 4|V]
* ForlargeV, |E| << |V/|?

* Suppose there are 3000 intersections
e Matrix has 30002 = 9000000 cells

* Number of cells used is 4(3000) = 12000
* 0.13% used

* Sparse

Sparse or dense?

* 1538 nodes, 8032 edges
15382 = 2365444

8032 << 2365444

e Sparse

Complete graph density

* Complete graphs are always dense K4

Recall that in a complete graph, node V has
edges to every node but itself

* Clearly dense

* The math:
 Complete undirected graph has

(”) = vv-1) edges
2 2 K4 0 |1 |2 |3 |

* O(IVI?

- 4 4
— 4 m -
— M - -
m =4 =4 -

Adjacency matrix of undirected
graph

* Represent adj. matrix of complete graph K4 as
matrix where 1 denotes edge exists
0 1 1 1

1
1
1

* What is a matrix property that any adjacency

matrix of an undirected graph has?

* Symmetric
e A=AT
* Foreveryi,j, a;=a;

Adjacency matrix summary

* Easy to code
* Usually wastes most of its space

* When sparse, finding adjacent nodes is
expensive

* O(|V|) to find only a few adjacent vertices

Adjacency list

* Keep list of vertices

 Each vertex has a list of adjacent vertices

* Remind you of anything we learned recently?

>

>

C

>

D

=

Adjacency list typing

e List of lists
e List<List<Vertex>>
* Getedges of vertex Owithal.get (0)

* HashMap of lists
* HashMap<String, List<Vertex>>
* Suppose we represent node a with the String “a”
* Then getits edgeswith al.get (Ya”)

* Array of lists
e List<Vertex>[]
e al[0]

e Pros and cons?

Adjacency list (weighted)

* |[f edges are weighted, store the weight in the cell

* This example uses array for vertices and linked
list for edges

* What would HashMap for vertices look like?

o | A —> 2| 2 —> 3| 1 —> 4] 3
1| B > 2 1 |=1¢

2 | C -1 1] 3 » 3 |5 |-t

3| D *

Adjacency list performance

1. Amount of space used in terms of V and/or E?

2. Worst-case, find all vertices adjacent to some
node v?

1. Normally O(]list for v|)

1. O(|V] + |E[)
1. We call this “linear” for graphs
2. “size” of graphis |V| + |E|

2. O(IV))
1. Complete graph

Adjacency list efficiency

* Need a HashMap for vertices
* See Adjacency list typing slide

* Many graph algorithms will be inefficient without

* |f you need to find a vertex, cannot afford to do O(|V]|)
search through all vertices list without making many
algorithms become quadratic or worse

* May want similar hash structure for edges
* E.g., HashMap<String, HashMap<String, Vertex>>

* [faand b are nodes, to see if b is adjacentto a, do
map.get (Ya”) .containsKey (“b")
« O(1)
* Inner LinkedList for edges is instead O(|V|)

* Toget all edges of a, use a for-each loop, keySet (),
etc.,onmap.get ("a”)

Topological sort (topo sort)

* First graph algorithm
 Computed for DAG G

* An ordering of all vertices in G such that if (u,v) €
E, then u<v in the sort (u precedes v in the
seguence)

* Every DAG has at least 1 topo sort
* Some have more than 1

* If a graph has a cycle, then it does not have a
topo sort (why?)

Examples * In-degree of vertex b
* Number of edges comingtob
* Number of edges (a, b) € E for distinct a
Q * Number of vertices b is adjacent to

Note that A has no in-edges,
and B has no out-edges

(B (©

only 1 topo sort
A C B

Check: 0 G

(A.B) in E... A<B /n sort
(AC) in E... A<C n sort no topo sort

(C.B) in E... C<B in sort Note that every vertex
has at least one in-edge

and one out-edge

Examples

3 topo sorts

only 1 topo sort A, B D C
A D C B A D C B
AJ DJ B/ C’

Properties

o Topo sort -> at least one vertex with no in-edge and
at least one vertex with no out-edge

e e Not sufficient: If there is
some vertex with no in-edge

and some vertex with no out-
Ifall vertices have both edge, there may still be no
in-edges and out-edges, Topo Sort (may or may not)

there is no Topo Sort

Necessary: If a graph has a Topo
Sort, there is some vertex with no
in-edge and some vertex with no
out-edge

Necessary and
sufficient

meaning

https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity
https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity
https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity

Uses &= _.Go
401 410 @ @

Use topo sort for

l ‘o structures like course
’ pre-requisites
o‘ @ The sorts give OK orders

. § of classes to take

283, 401, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 520, 523

Numerous topological sorts

401, 283, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 520, 523
401, 283, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 523, 520

Outdated numbers, but good example etc.

Algorithm to find a topo sort

* We’ll use this graph for our example

Two topo sorts

$.:1,2,5,4,3,7,6

S,:1,2,5,4,7,3,6

Algorithm

* Find atopo sortin O(|V| + |E]) (linear time)

* Assume G = (V, E) was built using adjacency list and

‘Icoha[cdin—degree of each node was stored during the
ui

1. Anynodes with in-degree 07? If no, then cycle,
done.

2. Pickany node v with in-degree 0. Put vinto the TS

3. Decrementin-degree of any node w where (v, w) €
E (essentially remove v and its out-edges from

graph)
4. More nodes? Goto step 1, else done

Execute on Example

1 [TS:1,2]

Node 1 has in-deg 0 so putitinto TS

Remove node 1, out edges, and redo in-
degrees

Node 2 has in-deg 0 so putitinto TS

Remove node 2, out edges, and redo in-
degrees

1 1 0

= KK

OF

: : . Execute on Example

Ts: 1,2 ,5 ,4 ,7 ,3 ,6

Node 5 has in-deg 0 so putitinto TS

Remove node 5, out edges, and redo in-degrees

1 0 ﬂ Node 4 has in-deg 0 so putitinto TS
E ' ! Remove node 4, out edges, and redo in-degrees
G‘O Nodes 3 and 7 have in-deg 0 so pick one, putin TS

3 1

Node 3into TS, remove it

% e 0 @ Node 6into TS,
X e 0 % . remove, done
0
©—@ O
(7 o

What happens with cycles?
@ [TS: }

e There are no vertices with
in-degree 0

What happens W|th cycles?

TS: C A Length is not |V|, invalid }]

1

= @

There are no vertices with
in-degree 0

However there are unprocessed nodes
So, we have found cycle(s)
So, no Topo Sort possible

Try on this graph (several topo

sorts) |
° 1 Topo Sort:

0
° 8 1 choice: 0, 1
2

5 choice: 0,5

o o g choice: 0, 8
0‘ S
0
o 0,“' ;
4
'/ l 10 choice: 9, 10

Topo sort algorithm analysis

* O([V[+[E])
* Examine and remove each vertex, each removal O(1) so
O(VI)
* While examining, operate on each out edge once by
decrementing in-degree of destination vertex, so O(|E|)

* Thisis what we hope for, actually depends on
several factors
* Remove each vertex O(1)
 Decrement in-degree of destination vertex O(1)

* Find vertex with in-degree 0 O(1)

* If you have to do a linear search through all vertices, then
O(|V]), and the algorithm’s complexity is then O(|V|? + |E|)

Efficient topo sort impl

Compute initial in-degree of each vertex while graph is built
* O(IE])

* While buﬂdmg graph, while maklng the entry for vertex u, for each of its
edges (u, v;), access Vertexv in O(1) and increment its in-degree (store it as
field in Vertex class) in O(1)

* Scanthrough all vertices and identify all with in-degree 0, add to
gqueue

* O(IVI)

* While the 0-in-degree queue is not empty
* Take a vertex off the queue and add it to the topo list

* Examine each edge and “remove” it by decreasing the in-degree associated
with the edge’s destination

* Ifin-degree of a destination vertex falls to 0, add it to the 0-in-degree queue

* When 0-in-degree queue is empty, if topo list does not contain |V|
vertices, then must have found a cycle, no topo sort possible

* Otherwise, topo listis valid
* Now O(|V| + |E|)

Shortest path

* Many problems require us to find shortest path from vertex v to vertex w

* Simple example, road navigation

* Look at 2 situations
* Digraph with unweighted edges
Weight 1 on all (want shortest path length)
* Digraph with weighted edges

Want lowest cost

Digraph Example

GoingfromAto F

Weighted: shortest path is
A, D, G, F with a costof 6

Unweighted: shortest path is
A, D, F with a length/cost of 2

Unweighted shortest path

* Input: Unweighted digraph G = (V, E), start vertex
s where seV

e Output: shortest path(s) from s to every other
vertex

* Unweighted algorithm in O(|V|?) fairly simple

* Adding weights complicates things, Dijkstra’s
algorithm

Bad unweighted shortest path

* Recognize that no shortest path can be longer
than |V] - 1

* Run a loop with len going from 0 to |V| - 1
(inclusive)

* In loop, go through all nodes and when we find
one with distance “len”, we mark all unmarked
adjacent nodes with distance “len + 1”

e Double nested loops O(|V] - 1) * O(|V]) is O(|V|?)

(Bad) Unweighted Shortest Path

Outputis a graph with each node being
labeled with the shortest distance from C

C is marked 0 to start

currDist=0,

find all nodes marked 0
We find C, and mark
adjacencies 0+1

currDist=1,

find all nodes marked 1
We find A, and mark
adjacencies 1+1
We find F, no adjacencies

currDist =2,
find all nodes marked 2

We find B, and mark unmarked
adjacencies 2+1

We find D, and mark unmarked

adjacencies 2+1

	L18 – Graphs
	Announcements
	Bipartite question
	Modeling with graphs
	Modeling with graphs, cont.
	Modeling with graphs, cont.
	Modeling with graphs, cont.
	Modeling with graphs, cont.
	Graph representation
	Adjacency matrix (unweighted)
	Adjacency matrix (weighted)
	Adjacency matrix performance
	Adjacency matrix space problem
	Sparse or dense? Traffic example
	Traffic example explanation
	Sparse or dense?
	Complete graph density
	Adjacency matrix of undirected graph
	Adjacency matrix summary
	Adjacency list
	Adjacency list typing
	Adjacency list (weighted)
	Adjacency list performance
	Adjacency list efficiency
	Topological sort (topo sort)
	Examples
	Examples
	Properties
	Uses
	Algorithm to find a topo sort
	Algorithm
	Execute on Example
	Execute on Example
	What happens with cycles?
	What happens with cycles?
	Try on this graph (several topo sorts)
	Topo sort algorithm analysis
	Efficient topo sort impl
	Shortest path
	Unweighted shortest path
	Bad unweighted shortest path
	(Bad) Unweighted Shortest Path

