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Announcements

• EX10 due tomorrow 7/23
• EX11 releases tonight, due LDOC
• QZ06 on Wednesday or Thursday (tentative)



Bipartite question

• Prove that trees (no parent pointer) are bipartite 
using induction

• Base case: single node is bipartite
• Inductive case: assuming tree with n nodes is 

bipartite, show that tree with n+1 nodes (i.e., add 
a leaf) is bipartite



Modeling with graphs
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Modeling with graphs, cont.

• What is the min cost from NYC to LA?
• NYC –5>   DC –10>   Char –30>  Dall –20> Denv –40> 

LA
• 105
• We’ll learn some algorithms for determining this

• From any city, can I get to any other city?
• I.e., is graph strongly connected?



Modeling with graphs, cont.
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Modeling with graphs, cont.

• FSM (finite state automaton) – simple computer
• Details in 455

• This one checks if a string has an even number of 0’s
• Vertices are “states”
• Numbers on edges are not weights, they’re input 

characters

• Find (cmd/ctrl + F) implemented with regex, 
implemented with FSM



Modeling with graphs, cont.

• Graph of Wikipedia
• Each color is a community the author found, of which 

there are 28 (e.g., politics & law, football (soccer), 
video games)

https://www.youtube.com/watch?v=JheGL6uSF-4


Graph representation

• 2 main approaches
• Adjacency matrix

• Edge information tracked in 2D array
• AM[i][j] represents an edge from vertex i to vertex j

• Adjacency list
• Each vertex object maintains a list of edge objects



Adjacency matrix (unweighted)

• For N nodes, use N x N array of Boolean
• If AM[a,b] then (a,b)∈E

• Edge from A to B
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Adjacency matrix (weighted)

• Array elements now integer or float
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Adjacency matrix performance

• Pros and cons in terms of time and space 
complexity?

• Use V = vertices, E = edges, |V| = # vertices, |E| = # 
edges

1. How fast to determine if there’s an edge from A to 
B?

2. How fast to find all edges of A?
3. Amount of space used?

1. O(1)
2. O(|V|)
3. O(|V|2)



Adjacency matrix space problem

• Problem is wasted space

• 64 spaces, 55 not used
• O(|V|2) space
• If |E| << |V|2, the graph is sparse
• If |E| ≈ |V|2, the graph is dense
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Sparse or dense? Traffic example

• Let V be street intersections
• Let E be streets between V
• Model as digraph

• Undirected might make more sense

• Is it sparse or dense?



Traffic example explanation

• Each node has maximum 4 edges out
• Nodes on the perimeter have fewer than 4

• |E| ≈ 4|V|
• For large V, |E| << |V|2

• Suppose there are 3000 intersections
• Matrix has 30002 = 9000000 cells
• Number of cells used is 4(3000) = 12000

• 0.13% used

• Sparse



Sparse or dense?

• 1538 nodes, 8032 edges
• 15382 = 2365444
• 8032 << 2365444
• Sparse



Complete graph density

• Complete graphs are always dense
• Recall that in a complete graph, node V has 

edges to every node but itself
• Clearly dense
• The math:

• Complete undirected graph has
𝑣𝑣
2 = 𝑣𝑣 𝑣𝑣−1

2
 edges

• O(|V|2)
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Adjacency matrix of undirected 
graph
• Represent adj. matrix of complete graph K4 as 

matrix where 1 denotes edge exists

•

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

• What is a matrix property that any adjacency 
matrix of an undirected graph has?

• Symmetric
• A = AT

• For every i, j, aij = aji



Adjacency matrix summary

• Easy to code
• Usually wastes most of its space
• When sparse, finding adjacent nodes is 

expensive
• O(|V|) to find only a few adjacent vertices



Adjacency list

• Keep list of vertices
• Each vertex has a list of adjacent vertices

• Remind you of anything we learned recently?
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Adjacency list typing

• List of lists
• List<List<Vertex>>
• Get edges of vertex 0 with al.get(0)

• HashMap of lists
• HashMap<String, List<Vertex>>
• Suppose we represent node a with the String “a”
• Then get its edges with al.get(“a”)

• Array of lists
• List<Vertex>[]
• al[0]

• Pros and cons?



Adjacency list (weighted)

• If edges are weighted, store the weight in the cell
• This example uses array for vertices and linked 

list for edges
• What would HashMap for vertices look like?
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Adjacency list performance

1. Amount of space used in terms of V and/or E?
2. Worst-case, find all vertices adjacent to some 

node v?
1. Normally O(|list for v|)

1. O(|V| + |E|)
1. We call this “linear” for graphs
2. “size” of graph is |V| + |E|

2. O(|V|)
1. Complete graph



Adjacency list efficiency

• Need a HashMap for vertices
• See Adjacency list typing slide

• Many graph algorithms will be inefficient without
• If you need to find a vertex, cannot afford to do O(|V|) 

search through all vertices list without making many 
algorithms become quadratic or worse

• May want similar hash structure for edges
• E.g., HashMap<String, HashMap<String, Vertex>>
• If a and b are nodes, to see if b is adjacent to a, do 
map.get(“a”).containsKey(“b”)

• O(1)
• Inner LinkedList for edges is instead O(|V|) 

• To get all edges of a, use a for-each loop, keySet(), 
etc., on map.get(“a”)



Topological sort (topo sort)

• First graph algorithm
• Computed for DAG G
• An ordering of all vertices in G such that if (u,v) ∈ 

E, then u<v  in the sort (u precedes v in the 
sequence)

• Every DAG has at least 1 topo sort
• Some have more than 1
• If a graph has a cycle, then it does not have a 

topo sort (why?)



Examples
A

CB

only 1 topo sort
A, C, B

Check:
(A,B) in E… A<B in sort
(A,C) in E… A<C in sort
(C,B) in E… C<B in sort

A

CB

no topo sort
Note that every vertex 

has at least one in-edge 
and one out-edge

Note that A has no in-edges, 
   and B has no out-edges

• In-degree of vertex b
• Number of edges coming to b
• Number of edges (a, b) ∈ E for distinct a
• Number of vertices b is adjacent to



Examples
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only 1 topo sort
A, D, C, B

3 topo sorts
A, B, D, C
A, D, C, B
A, D, B, C
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Properties
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If all vertices have both
in-edges and out-edges, 
there is no Topo Sort

Not sufficient: If there is 
some vertex with no in-edge 
and some vertex with no out-
edge, there may still be no 
Topo Sort (may or may not)

Necessary: If a graph has a Topo 
Sort, there is some vertex with no 

in-edge and some vertex with no 
out-edge
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Necessary and 
sufficient 
meaning

Topo sort -> at least one vertex with no in-edge and
        at least one vertex with no out-edge 

https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity
https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity
https://www.khanacademy.org/test-prep/lsat-prep/xdf35b2883be7178a:lsat-prep-lessons/xdf35b2883be7178a:lsat-prep-logic-toolbox/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity


Uses
Use topo sort for 

structures like course 
pre-requisites

The sorts give OK orders 
of classes to take

401
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431

455283

493
524

523

533

535 550

541

283, 401, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 520, 523  

401, 283, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 520, 523  

401, 283, 455, 410, 426, 535, 493, 520, 550, 411, 431, 533, 541, 523, 520  

etc.

Numerous topological sorts

Outdated numbers, but good example



Algorithm to find a topo sort

• We’ll use this graph for our example

1

43

2

5

6 7 𝑺𝑺𝟏𝟏: 1, 2, 5, 4, 3, 7, 6 

𝑺𝑺𝟐𝟐: 1, 2, 5, 4, 7, 3, 6 

Two topo sorts



Algorithm

• Find a topo sort in O(|V| + |E|) (linear time)
• Assume G = (V, E) was built using adjacency list and 

that in-degree of each node was stored during the 
build

1. Any nodes with in-degree 0? If no, then cycle, 
done.

2. Pick any node v with in-degree 0. Put v into the TS
3. Decrement in-degree of any node w where (v, w) ∈ 

E  (essentially remove v and its out-edges from 
graph)

4. More nodes? Goto step 1, else done



Execute on Example1
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Node 1 has in-deg 0 so put it into TS

Remove node 1, out edges, and redo in-
degrees
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Node 2 has in-deg 0 so put it into TS

TS: 1 , 2 

Remove node 2, out edges, and redo in-
degrees



Execute on Example

Node 5 has in-deg 0 so put it into TS

Remove node 5, out edges, and redo in-degrees

43 5
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0

Node 4 has in-deg 0 so put it into TS

TS: 1 , 2 

Remove node 4, out edges, and redo in-degrees

, 5 , 4 
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Nodes 3 and 7 have in-deg 0 so pick one, put in TS
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Node 3 into TS, remove it
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0

, 3 , 6 

Node 6 into TS, 
remove, done



What happens with cycles?

TS:

There are no vertices with 
in-degree 0

Can’t even start this one
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What happens with cycles?
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There are no vertices with 
in-degree 0

However there are unprocessed nodes
So, we have found cycle(s)

So, no Topo Sort possible

Length is not |V|, invalid



Try on this graph (several topo 
sorts)
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Topo sort algorithm analysis

• O(|V| + |E|)
• Examine and remove each vertex, each removal O(1) so 

O(|V|)
• While examining, operate on each out edge once by 

decrementing in-degree of destination vertex, so O(|E|)

• This is what we hope for, actually depends on 
several factors

• Remove each vertex O(1)
• Decrement in-degree of destination vertex O(1)
• Find vertex with in-degree 0 O(1)

• If you have to do a linear search through all vertices, then 
O(|V|), and the algorithm’s complexity is then O(|V|2 + |E|)



Efficient topo sort impl
• Compute initial in-degree of each vertex while graph is built

• O(|E|)
• While building graph, while making the entry for vertex u, for each of its 

edges (u, vi), access Vertex vi in O(1) and increment its in-degree (store it as 
field in Vertex class) in O(1)

• Scan through all vertices and identify all with in-degree 0, add to 
queue

• O(|V|)
• While the 0-in-degree queue is not empty

• Take a vertex off the queue and add it to the topo list
• Examine each edge and “remove” it by decreasing the in-degree associated 

with the edge’s destination
• If in-degree of a destination vertex falls to 0, add it to the 0-in-degree queue

• When 0-in-degree queue is empty, if topo list does not contain |V| 
vertices, then must have found a cycle, no topo sort possible

• Otherwise, topo list is valid
• Now O(|V| + |E|)



Shortest path
• Many problems require us to find shortest path from vertex v to vertex w

• Simple example, road navigation

• Look at 2 situations
• Digraph with unweighted edges

• Weight 1 on all (want shortest path length)

• Digraph with weighted edges
• Want lowest cost
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1

2
Weighted: shortest path is 
A, D, G, F  with a cost of  6

Going from A to F 

Unweighted: shortest path is 
A, D, F  with a length/cost of  2

Digraph Example



Unweighted shortest path

• Input: Unweighted digraph G = (V, E), start vertex 
s where s∈V

• Output: shortest path(s) from s to every other 
vertex

• Unweighted algorithm in O(|V|2) fairly simple
• Adding weights complicates things, Dijkstra’s 

algorithm



Bad unweighted shortest path

• Recognize that no shortest path can be longer 
than |V| - 1

• Run a loop with len going from 0 to |V| - 1 
(inclusive)

• In loop, go through all nodes and when we find 
one with distance “len”, we mark all unmarked 
adjacent nodes with distance “len + 1”

• Double nested loops O(|V| - 1) * O(|V|) is O(|V|2)



(Bad) Unweighted Shortest Path

A

DC

B

E

F G

0

1

1

C is marked 0 to start

currDist = 0, 
find all nodes marked 0

We find C, and mark 
adjacencies 0+1

currDist = 1, 
find all nodes marked 1

We find A, and mark 
adjacencies 1+1

2

2

We find F, no adjacencies

currDist = 2, 
find all nodes marked 2

We find B, and mark unmarked 
adjacencies 2+1

3

We find D, and mark unmarked 
adjacencies 2+1

3

Output is a graph with each node being 
labeled with the shortest distance from C
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