| 16 - Hashing

7/18/24

Hashing demo

* hash.py

https://github.com/comp210ss2/lecture_code/blob/main/src/main/java/comp210/L16/hash.py

Hashing applications

When | download a file, how can | verify that the download was successful (no errors or
tampering)?

* Using a common hash function (e.g., SHA256), the website can post the hash of the file. | can then hash

my file and compare

}/.Vebsites)need to verify my password when | login, but they can’t store it in plaintext
insecure

* They store the hash of my plaintext password

Cryptocurrency/blockchain (simplified example)
* The blockchain can be thought of as a linked list of blocks where the links are hashes
* The system generates a “target” hash value (say, a hash where the first 30 bits are all 0) for the current

block, and you need to find a value that, after being hashed, is less than that value
If so, you get a Bitcoin (and create a new block)

For us,

Hashing is O(1), allowing us to implement some operations such as insert, delete, find in O(1)
But ordering operations (findMin, traversal) cannot be done

Basic idea, we can index into an array (integer indices) in O(1). What if the key is not an integer? Convert
it to an integer by hashing, then use the hash to locate data in an array-like structure

Hash terms

* Hashing is the basic concept of computing an integer (the “hash” or
“hash value”) from some data value (the “key”)

* We intend to use that hash integer as an index into an array or table of
associated data (keys and associated values)

 Map is an ADT similar to Python’s dict
void put(k, v)

V get(k)

void remove(k)

boolean contains(k)

* HashMap is an implementation of Map using a hash function
* Hash table is the array where data is stored

Hash function

* The computation that generates a hash value from a key
* hash(key) -> int

* Used to implement Map via hash table
» get(key) generally becomes table[hash(key)] in the implementation

Hash table :

2
* Hash table is an array of key/value
pairs 3
* put(“jones”, 4834173)
« Suppose hash(“jones”)is 5 4

 Sowe putthis K, V pairinto array slot 5

. 5 j , 4824173
* get(“jones”) jones

* hash(“jones”)is again 5

* We look at array slot 5 and retrieve the ®
associated value 4824173
* What if hash is bigger than table 7
size?
* Use modulus, i.e., index = hash(“jones”) 8
% size
* May omit the % later, but you should 9

assume it’s there

10

Time complexity

* Since we assume the hash function is O(1) to compute, put, get,
and find are O(1)

« Compute hash
* Lookin array slot

* Find is O(n) for simple array, average-case O(log n) for BST

Collision 1

2 bob
* For simplicity, can show hash 3| jane
tables with just the key, but .
remember for a Map, there can o
be associated data 5
* |[n this table, suppose 6
hash(“sam”) is 7
* Suppose hash(“lara”) is also 7 o
* Slot already taken 8

e Collision! 91 amy

10

Pigeonhole principle

* Are collisions possible to avoid
entirely?

* Would be possible if two distinct
keys always get two different hash
values

* But we allow our keys to be anything,
whereas the hash output is fixed-size

* Pigeonhole principle: if there are 8
chicken boxes and 9 chickens, there
must be 2 chickens in some box

* Best we can do is design the hash
function so that it distributes keys
evenly over the available array
subscripts

Hash functions and collisions in practice

* A good hash function makes collisions very rare
* E.g., SHA256 has a 256 bit output, thus 2%°° possible outputs

* How large is 22°°?
* 1078 to 1282 atoms in the universe
* To date, no one has found a collision for SHA256 (doing so would break it
for cryptographic purposes)
* But for our purposes, we can’t always spare 256 bits of output per
key (SHA256 is more for cryptography)

 WWe have to deal with collisions

Good hash functions

* Hash function must be fast to compute
« O(1)

* Really, something like O(K) where Kis the key size, but we’ll assume keys are
fixed-size (e.g., strings have a max length) so that this becomes O(1)

* Hash function must distribute keys evenly over the available range of
values
* For us, the available range is {0, 1, ..., array size-1}

* Incorporates all data of the key

* Decorrelates keys such that if two keys are similar, they should not get
similar hash values

* |deally, two distinct keys should get two different hash values

Probability of collisions

* Probability of collision affected by
* Quality of hash function
* How well it evenly distributes keys over the index range

* Table structure
* Number of array slots
 Mathematical properties of the maximum index

 E.g.,if sizeis prime or not
* Will show example soon
* For the rest of lecture, assume keys are lowercase Strings with
some reasonable maximum upper bound

Example bad hash function

* Suppose our hash function for String is the first letter of the key as
Its position in the alphabet

statlic 1nt badHash (String key) {
return (((1nt) key.charAt(0)) - ((1nt)
a'));

J

“u

Why is bad hash function (first letter's position in alphabet) bad?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Why is it bad?

* Only 26 different range elements
 Can only store 26 keys before guaranteed collisions

* First character is not evenly distributed over alphabet
 Lots of “s”, “m words
* Not many “x”, “z”, “q” words

) g
, t

Better hash function

* Sum all chars, mod by table size

static 1nt betterHash (String key, 1nt tabSize) {

int hval = 0;
for (int 1=0; 1<key.length(),; 1++) {
hval += key.charAt(1i);
If tabSize is large (say 10007)

} And keys short (say 8-15 chars)

O

return hval % tabSlze; Then the sum of the chars is small
and will cluster at low end of table

“u

Come up with a collision for betterHash?

[13 » ¢

cat”, “act” (doesn’t matter what table size is)

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Pretty good hash

e Jse multiplication for b|gger Stat?c int prettyGoodHash (String key, int
numbers to avoid clustering e

» Use prime multiplications to At
avoid small cycles hval = 31 * hval + key.charAt (i);

« Example cycle: [0...91 % 8 = [0, 1, }}lval el % tabSises
2,3,4,5,6,7,0,1..] e

 Multiplier and tabSize should } fival += tabSize;

be coprime

return hval;
* Consider multiplier 2 and tabSize }

8, what goes wrong?

Another idea: multiply by multiplier!, e.g. 31 *
charAt(0), 312 * charAt(1), etc.

Table size

* Best to use a prime table size

* Or, for convenience (i.e., don’t have to choose prime number),
power of 2 as the table size, but do not use even multipliers for the

multiplication
e Load factor
 #elements in table/ table size

* 500 elements, size 997 table => load factor 500/997
* Table half-full?

* Depends on how collisions are handled

Collision resolution

* Two main forms
* Chaining

* Each array slot contains not a single element but a list
* Linear probing
* Each array slot contains one element
* |f we hash to full slot, we have a plan for going to a next slot to try

* How does this affect O(1) of insert and find?

Chaining

* Each entry is null or a list of cells

* If a new key hashes to an empty slot, start a new list with that key
data

* |f a new key hashes to an occupied slot, add that key data to the
list

—

cindi

0 —» andy
1
2 > claire |—> charles
3 = dennis |—> donna
4
5 > fern
A AP
22 —»| wanda = warren
23 —bl xerxes
24
25 —p| Zzorba

Example

Keys: hash

andy, 0
dennis, 3
zorba, 2
claire, 2
wanda, 22
charles, 2
fern, 5
warren, 22
cindi, 2
xerxes, 23
donna 3

Use bad hash function (first
char) for simplicity

Chaining operations

* put(key, value)
* hash(key) to get table index
* Look for key in the list at that index in the table
* |[f key exists in that list, replace associated value with new value
* |[f key does not exist in that list, add key/value pair to that list

* find(key)
* hash(key) to get table index
* Look for key in the list at that index in the table
* |[f key exists in that list, return associated value
* Otherwise, does not exist (return null or throw exception, etc.)

Chaining operations

* remove(key)
* hash(key) to get table index
* Look for key in the list at that index in the table
* |[f key exists in that list, remove key/value pair from list

Chaining operations time complexity

* Get (average and worst)
* Calculate hash to find right list
* O(k) =>0O(1) for bounded key size
* Traverse list looking for key
* O(average list size)
* Average list size == load factor
* |f we resize table when load factor hits a constant limit, this is O(1)

* 0(1)

Chaining operations time complexity

* put (average)
* Calculate hash to find right list
. O(K)=>0(1)
* Traverse list
* O(avg. list size) => O(load) => O(1)
* |[nsertinto list if not found

* O(1), add to head of list
* No need for tail pointer

* O(1)

* put (worst)

. I<May need to resize table if load limit exceeded to reduce average list size and spread
eys out

* Each existing K needs to be rehashed
* O(n)
* Best practice: resize when load exceeds 1.0

|s BST instead of list worth it?

* In the case of a collision where we have to traverse a list to find
some element, why don’t we store a BST to make traversal faster?
That is, log(list length) instead of 2 list length

 BST is over-complicated for little gain, if any

* Prefer to focus on keeping lists short so that we can consider
O(list length) to be O(1)

* Make table size bigger, make hash function distribute over more
slots

Probing

* Table entry is null or a single cell

* If a new key hashes to an empty slot, then store a cell there with
that key data

* |f a new key hashes to an occupied slot, compute a next slot to try
(repeat as needed)

Linear probing

* Linear probing says to try other “nearby” slots
* |f table[hash(key)] % size is full

* Try table[hash(key)+1] % size, and if that’s full
* Try table[hash(key)+2] % size

* Until a slotis open

Example

Keys: hash

andy, o
dennis, 3
zorba, 25
claire, 2
wanda, 22
charles, 2>3>4
fern, 5

warren, 22->23

cindi, 2>3>4>5>6
Xerxes, 23->24

donna 324>52>6->7

Shows “clustering”
or “clumping”

where you get
heavily used
crowded parts,

empty paris...

0 andy
1
2 claire
3 dennis
4 charles
5 fern
6 cindi
7 donna
8
AV
;\\; AN
22 wanda
23 warren
24 xerxes
25 zorba

Probing operations

* put(key, value)
* Hash(key) to get table index

* |f table entry contains correct key or is empty, then replace value or store
key/value pair at that spot as appropriate

* Else, try the next table entry
 Continue until success

e find(key)
* Hash(key) to get table index
* |f table entry contains matching key, then return associated value
* Else, try the next table entry
* Continue until key is found or empty spot is encountered
* |f empty spotis encountered, then key is not in map

Probing operations - remove

* remove(key)

* Not so simple, can’t just empty the table cell which might create a gap in
some probe chain
 E.g.,on slide before previous one, suppose we actually delete "dennis”

* Then when attempting to find “charles”, we go 2 -> 3, but 3 is now empty, so we
assume “charles” is not in the table and stop finding

* Lazy deletion required
* Replace removed key with some “inactive” marker
* Onfind, “inactive” says “occupied, keep probing”
* On put, “inactive” says “open, free for use”

Clustering issue

* Clustering slows access
* |t’s like having to search a listin hashing to lists

* Solution: larger table size
* Table space in probing is like the list cells in chaining

* More space means more open slots for initial hash, less hopping
to probe

* Load A should be %2 for probing (assumes well distributed hash
function)

* Probing guaranteed to work if A< 1.0 (i.e., not full), but 0.5 for better
performance

Clustering solution?

* Need custom hash function?

* Some data may have a form that makes clusters with some hash
function, not others

e Consider a hash function that uses first 3 chars

 McDuff, MacBeth, McBride, McDaniel, MacGraw, MacDonald, MaclLean,
McKensie, McDermott, ...

* These will collide

* No hash function is perfect for all data

Clustering solution: probe randomly

 We’ll actually probe “more randomly”

* Probe farther away from collision site and leave some slots near
the collision open for future keys

* General probing formula
* h, = hash(key) + (i)
* f(0)=0

 Can get different probing patterns using different formulas f(i)

General Probing

Let’s formalize this

A key defines a sequence of hash values

hy,h{,hy,...h,, ..

We try each hash val in sequence until we get an open slot
h; = hash(key) + f(i)
f(0)=0

this makes

ho = hash(key) the basic hash value

Linear Probing

We get different probing patterns by
defining different f(i) functions

Linear Probing:
h; = hash(key) + f(i)
f(0)=0, fi) =1 for i >0

Sequence: hash(key)+0
hash(key)+1
hash(key)+2

hash(key)+3 ... % table length

Quadratic Probing
Probe via skipping by squares
h; = hash(key) + f(i)
f(0O)=0, f(i) =i* for i>0

Sequence: 0: hash(key)+0
1: hash(key)+1% is hash(key)+1
2: hash(key)+2? is hash(key)+4
3: hash(key)+3?% is hash(key)+9

8: hash(key)+8% is hash(key)+64
% table length

Exponential Probing
Probe via skipping by powers of 2
h; = hash(key) + f(i)
f(0)=0, f(i) =2' for i>0
Sequence: 0: hash(key)+0
1: hash(key)+2! is hash(key)+2
2: hash(key)+2? is hash(key)+4
3: hash(key)+23 is hash(key)+8
8: I‘;;sh(key)+28 is hash(key)+256
% table length

Probing performance

* get (average and worst)

* Hash(key) to find initial slot
« O(1)
* Traverse probing sequence looking for key
* O(avg. cluster size)
* Avg. cluster size based on load factor
* |f we resize table when load factor hits constant limit, then O(1)

* 0(1)

Probing performance

* put (average)
* Hash(key) to find initial slot
« O(1)
* Traverse probing sequence looking for key
* O(avg. cluster size) = O(load) = O(1)
* Insertinto empty slot O(1)
 O(1)
* put (worst)
* May need to resize table if load limit exceeded

* Each existing K rehashed
* O(n)

Practice problem 1

* Using an initially empty HashTable of size 11 and the Hash
Function H(k) =k % 11, insert the following keys, in the given order,
using the linear probing method: 0, 1, 8, 9, 41, 33, 45, 42, 61, 53

Practice problem 1 solution

0

1

33
45
42
53
61

* To save work, first apply the
hash function to all values
(though not what would happen
In reality)

*[0,1,8,9,41, 33, 45, 42, 61, 53]
% 11 =

[0,1,8,9,8, 0, 1, 9, 6, 9]

© 00 N O OO A WO N = O

41

RN
o

Practice problem 2

* Using an initially empty HashTable of size 11 and the Hash
Function H(k) =k % 11, insert the following keys, in the given order,
using the quadratic probing method: 0O, 1, 8, 9, 41, 33, 45, 42, 61,
53

Practice problem 2 solution

0
1
45
53
33

* To save work, first apply the
hash function to all values
(though not what would happen
In reality)

*[0,1,8,9,41, 33, 45, 42, 61, 53]
% 11 =

[0,1,8,9,8, 0, 1, 9, 6, 9]

41
61

© 00 N O OO A WO N = O

42

RN
o

	L16 - Hashing
	Hashing demo
	Hashing applications
	Hash terms
	Hash function
	Hash table
	Time complexity
	Collision
	Pigeonhole principle
	Hash functions and collisions in practice
	Good hash functions
	Probability of collisions
	Example bad hash function
	Slide Number 14
	Why is it bad?
	Better hash function
	Slide Number 17
	Pretty good hash
	Table size
	Collision resolution
	Chaining
	Slide Number 22
	Chaining operations
	Chaining operations
	Chaining operations time complexity
	Chaining operations time complexity
	Is BST instead of list worth it?
	Probing
	Linear probing
	Example
	Probing operations
	Probing operations - remove
	Clustering issue
	Clustering solution?
	Clustering solution: probe randomly
	General Probing
	Linear Probing
	Quadratic Probing
	Exponential Probing
	Probing performance
	Probing performance
	Practice problem 1
	Practice problem 1 solution
	Practice problem 2
	Practice problem 2 solution

