
L12/13 – Heap
7/12/24, 7/15/24



Announcements

• QZ04 tomorrow 7/16 (topics)
• EX07 due tonight
• EX08 releases after class
• This slide presentation in .pptx format has 

animations in slideshow mode (credit: Prof. 
Stotts)

https://comp210ss2.github.io/notes/qz04_topics/
https://www.cs.unc.edu/%7Estotts/
https://www.cs.unc.edu/%7Estotts/


PrQueue slides from L11

• See PrQueue slides from L11
• PrQueue is an ADT we will implement with 

(binary) heap

https://docs.google.com/presentation/d/1uhC_8wrxh8F5_bGeuucapdLmAFNXu1HV0dtJeHP2YAQ/edit?usp=sharing


Min binary heap (min-heap)

• Structure property - Complete binary tree
• All levels fully filled except possibly the last level, 

which is filled from left to right

• Heap-order property
• Min element at root
• Every child ≥ parent
• Every path from root to leaf is an ordered 

(nondecreasing, small to large) list
• Every subtree of heap is also a heap

• Visualization

https://www.cs.usfca.edu/%7Egalles/visualization/Heap.html


Structure property (complete BT)



Binary Heap
Heap-order property 

every child >= parent

4

31 18

11 9

3

7

1216

21

Min at root

every path root to leaf is an ordered 
sequence small to large



Every subtree is a min-heap



Complete BT is balanced (AVL 
definition, |hL-hR| ≤ 1), leading to 
worst-case O(log n) time 
complexities instead of O(n) like 
degenerate BST

Complete BT allows array 
representation of heap with 
formulas for indices of parent 
and child of node i, shown on 
next slide



Implementation

• Another benefit of structure property: allows very 
efficient representation with an array

• Leave slot 0 unused (start at 1)
• Store node value as array element
• For node in slot i

• Parent is at  ⌊i / 2⌋ (floor, int division)
• Left child at 2i
• Right child at 2i+1

• Array representation => Node class not needed 
(save memory)



Example

0   1   2   3    4   5   6   7   8   9  10  11  ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

To fill array, breadth-first across tree

root in slot 1: 3

then level 1 in slots 2,3: 7, 4

level 2 in slots 4,5,6,7: 16,12,11,9

next level in slots 8, 9, 10 …15: 31,18,21

Next item causes slot 11 to fill



Example

0   1   2   3    4   5   6   7   8   9  10  11  ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

To infer tree structure from array

node in slot 1: 3

Parent: floor(1/2) is 0 (root, no parent)

Lchild: 2*1 is 2, slot 2 has 7

Rchild: (2*1)+1 is 3, slot 3 has 4



Example

0   1   2   3    4   5   6   7   8   9  10  11  ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

To infer tree structure from array

node in slot 4 is 16

Parent: floor(4/2) is 2, slot 2 has 7

Lchild: 4*2 is 8, slot 8 has 31

Rchild: (4*2)+1 is 9, slot 9 has 18    



Example

0   1   2   3    4   5   6   7   8   9  10  11  ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

node in slot 4 is 16

Parent: floor(4/2) is 2, slot 2 has 7

Lchild: 4*2 is 8, slot 8 has 31

Rchild: (4*2)+1 is 9, slot 9 has 18    

half back double forward

parent L-child R-child



Insert

0   1   2   3    4   5   6   7   8   9  10  11  ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

Next item causes slot 11 to fill
this maintains structure property

insert ( 17 )

still has heap-order property ?

We are good 
( by luck of it being 17, > parent 12 )17

17



Insert… what if ?

0   1   2   3    4   5   6   7   8   9  10  11  ...

4

31 18

11 9

3

7

16

21

3 7 4 16 12 11 9 31 18 21

insert ( 10 )

still has heap-order property ?

We are not good 
( since 10 < parent 12 )

swap 10 with parent 12

Good here
And good here

10

10

12

Slot 11 parent is floor(11/2) = 5



Swap-Up the Value

0   1   2   3    4   5   6   7   8   9  10  11  ...

4

31 18

11 9

3

7

16

21

3 7 4 16 12 11 9 31 18 21

insert ( 2 )

Check for heap-order, swap upwards 
repeat until we get it

In the array representation…
Slot 11 parent is floor(11/2) = 5

Slot 5 parent is floor(5/2) = 2
Slot 2 parent is floor(2/2) = 1

2

2

12

Slot 11 parent is floor(11/2) = 5



✓



Alternate array representation – 
use index 0
• Why leave slot 0 unused? Wastes space?
• If we used slot 0,

• For node in slot i
• Parent is at ⌊(i-1) / 2⌋ (floor, int division)
• Left child at 2i +1
• Right child at 2i+2

• Our previous formulas (leaving 0 unused) were
• For node in slot i

• Parent is at  ⌊i / 2⌋
• Left child at 2i
• Right child at 2i+1



Easier formulas for parent and child index of node i
Also, faster for computer to compute



Insert code details

• Bubble up element
• Each swap takes 3 assignments (temp variable)
• O(log n) swaps
• O(3 log N) = O(log n)

• Alternatively, “bubble-up the hole” to avoid 
swaps, as shown on next slides



Bubble-up the hole

0   1   2   3    4   5   6   7   8   9  10  11  ...

2

4

18

11 9

3

7

16

21

3 7 4 16 12 11 9 31 18 21

insert ( 2 )

Check for heap-order, if  2 were put in 
the hole

Move parent down into hole, 
check 2 again, and again

In the array representation
Move values into the hole, 

hole moves toward slot 1

12

temp31
2



Insert time complexity

• Put new value in next open slot in array/tree
• Swap/bubble up towards root until heap-order is 

achieved
• Worst-case O(log N) as it follows path to root 

(height)



Insert average case O(1)!
• insert average-case O(1)!

• In short, ½ to ¾ of nodes are in the bottom 2 layers
• New elements will probably end up at bottom 2 layers or near
• We consider bottom 2 layers, not bottom layer only, because bottom layer of 

complete tree may have only one element
• To make the rest of this analysis easier, assume the tree is perfect so that ½ 

of nodes are leaves
• Leaves tend to be larger due to heap-order

• If we assume (for now) the leaves are the largest elements in the heap, then the 
probability that the new element will be a leaf (upper half of values) is 0.5

• Otherwise, suppose the new element will be in the second-to-last layer, with 
probability 0.25

• Full second to last-layer has ½ the nodes of full last layer
• Compute expected value

• Expected number of comparisons is 1(0.5) + 2(0.25) + 3(0.125) + … = 2
• Previous assumption that the new element will be a leaf is 0.5 is false (slightly less), 

but still bounded by a constant, so the reasoning holds. Also may not be the case that 
the tree is perfect

• Average number of comparisons for insert is 2.67, O(1)



• Perfect BT of height h has 2h nodes in bottom layer
• Perfect BT of height h has 2h+1-1 nodes
• Ignoring the -1 (negligible difference for large h), ½ of a perfect BT’s nodes are 

in the bottom layer
• Thus, ½ (½) = ¼ of a perfect BT’s nodes are in the layer above
• ½ + ¼ = ¾



getMin time complexity

• O(1)
• Read the value at root



delMin

• Delete the minimum (root node) of the min heap and 
ensure that the new minimum bubbles to the root

• Remove root node val (it is min val)
• Leaves a “hole” at root node

• Pull out val in last leaf (eliminates a node)
• See if it fits in root hole

• If so, put leaf val into root hole
• If not, move hole down to smaller child
• Repeat



delMin Example

0   1   2   3    4   5   6   7   8   9  10  11  ...

3 74 16 11 9 31 18 21

delMin ( )

Remove root value

Save out last element

Bubble hole down from root, 
swapping with smaller child

Stop when last element causes 
heap-order in the hole

Array representation

 
2

4

31 18

11 9

3

716

21 12

2

temp

12





delMin time complexity

• Worst-case O(log n)
• Remove root node: O(1)
• Save out last element: O(1)
• Bubble down the hole: O(log N)

• One copy per bubble move
• +1 at end for copying temp value into hole

• Swap down method: O(log N)
• 3 assigns per swap, O(log N) swaps
• O(3 log N) is O(log N)



increaseKey/decreaseKey

• Find the tree element with the key
• Change priority by adding some increment
• Swap/bubble down (with smaller child) toward 

leaves until heap-order is achieved
• Worst-case O(log N) as it follows path root to leaf 

(height)

• For decreaseKey, bubble up toward root



increaseKey Example

increaseKey(curPriority, delta)

increaseKey(6, 8)

Find element with priority 6

Bump up by delta 8 to 14 

Bubble hole down from elt
Stop when heap-order is restored
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31 18

11 19
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2
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8
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✓



increaseKey issues

• As we just saw, can be worst-case O(n) to find 
element with some priority

• To speed up find to O(1), can use a HashMap 
along with the heap

• HashMap is similar to Python dict
• Attach unique data field (id) to each node
• Find node by id
• Key is id, value is array index
• Now finding is O(1), but still O(log n) cost for bubbling



Heap time complexities

Average Worst-case

insert O(1) O(log n)

delMin O(log n) O(log n)

getMin O(1) O(1)

find(priority) O(n) O(n)

incKey(curPriority, delta) O(n) or O(log n) 
(optimized)

O(n) or O(log n) 
(optimized)

n is the number of nodes



• Degenerate BST has O(n) insert and 
remove because height is n – 1, not 
log(n). Insert and remove thus 
function similarly to linked list 
insert/remove

• Heap is complete, thus balanced 
(AVL)

• No degenerate case
• Height is always ⌊log2(n)⌋
• Insert and remove worst-case 

O(log n)



• Insert avg O(1) reasoning shown on 
previous slide

• Insert bubbles up starting from 
bottom layer, and most nodes are at 
the bottom. On average, won’t have 
to go far

• delMin always bubbles down 
starting from the root, but most 
nodes should be near the bottom



Heap limitations

• Although heap has much faster getMin than 
BST, it has less sort information

• Can’t get full sort out of heap directly like a BST 
with in-order traversal

• How to sort with heap?
• Recall, quicksort and mergesort average case O(n log 

n)
• BST sort average O(n log n), worst O(n2)



Sorting with heap (naïve)

• Worst-case
• insert O(log n)
• Insert n items O(n log n)
• To get sorted sequence, delMin n times
• delMin is O(log n)
• Retrieve sequence is O(n log n)
• O(n log n) + O(n log n) = O(n log n) is not practically as 

good as BST sort’s average case
• BST sort average-case is O(n log n) + O(n)



Make BHEAP by N Inserts

6

12

6 6

12 9

6

12 9

4

6

12

94

4

12

96

4

12

96

5

4

12

95

6

4

12

95

6 3

4

12

35

6 9

3

12

45

6 9

Insert(6) Insert(12) Insert(9) Insert(4)

Insert(5) Insert(3)

O( N log N)



Efficient build heap

• There is a way to convert a list of unsorted n 
elements to a heap in O(n) time

• Structural property
• Load n elements into array from slot 1 to last (order 

unimportant)

• Heap-order
• Call min-heapify ⌊n / 2⌋ times

• Shown on next slide



Min-heapify(A, i)

• i is the index of the node that we “min-heapify”
• Min-heapify assumes that the children of i 

(left and right) are both min heaps, but i may 
violate heap order

• Bubble-down node at index i until heap-order is 
satisfied

• Similar to deleteMin, must swap with smaller 
element



This is max-heap but 
ignore, pretend it’s a 
min-heap



Min-heapify

This is max-heapify, where we swap 
(possibly) with the larger child, then recur. 
For min-heapify, simply find the smaller 
child and swap (possibly) with that



Min-heapify analysis

• Lines 1-9 are Θ(1)
• Recursive call on line 10 will operate on a child subtree of size at most 2n/3

• Proof that children subtrees have size at most 2n/3 is omitted
• Thus, min-heapify worst-case recurrence is
• Solution by master theorem (not covered in COMP 210) is O(log n)

• Or use recursion tree



Efficient build heap

• Start with parent of last node, bubble down (call 
min-heapify) as needed

• Go breadth-order backward to root



Assumes that node at index i may violate heap-order
 I.e., subtree rooted at index i may not be a min-heap
But each leaf is a trivial min-heap



Make BHEAP by Build

0   1   2   3    4   5   6   7   8   9   10  11  …

Insert 6, 12, 9, 4, 5, 3   
We have all values at the start, no need 
to do individual insert ops

36 12 9 4 5

Initial tree form

6

4

912

5 3

Now bubble down 
Start with first non-leaf that has a child

What array slot is this?
parent of the last array item
Last item (3) is in slot 6
Parent of 3 is floor(6/2) which is 9, in slot 3

So start bubble down at item in slot 3.



Bubble Down in Build

6

4

912

5 3

Initial tree form

6

4

312

5 9

6

12

34

5 9

3

12

64

5 9

3

12

45

6 9

Heap we got 
with N separate 

inserts



Bubble Down in Build

16

4

912

5 3

Initial tree form

16

4

312

5 9

16

12

34

5 9

3

12

164

5 9

Bubble down goes to 
leaf if needed

3

12

94

5 16



3, 5, 7, 6, 25, 12, 17, 22, 8



buildMinHeap analysis (informal)

• Naïve upper bound O(n log n)
• Each min-heapify call is worst-case O(log n)
• Build makes O(n) calls
• O(n log n)

• Tighter upper bound O(n)
• min-heapify’s runtime depends on the height of 

the node
• The height of most nodes are small (e.g., ½ to ¾ of 

nodes are in the bottom 2 layers)
• Similar to insert average case O(1) analysis

• Full proof on CLRS 4 ed. pg. 169



Heapsort time complexity

• Build heap (efficient) - O(n)
• Retrieve sequence by performing delMin n 

times - O(n log n)
• O(n log n) + O(n) = O(n log n)

• Theoretically same as BST sort



Real heapsort

• Heapsort can be done in-place (no extra array 
memory needed to store results of delMin)

• delMin removes an element from heap array at 
end, leaving an array slot open at end

• Simply put the removed element at array end 
(heap last + 1)

• Repeat until heap empty
• Array will contain all elements in reverse order



Elements:  7, 2, 19, 8, 11, 4, 16

Initial heap array:  x  7  2 19  8 11  4 16
                     0  1  2  3  4  5  6  7
Complete Build:      x  2  7  4  8 11 19 16
                     0  1  2  3  4  5  6  7
First delMin:        x  4  7 16  8 11 19  2
                     0  1  2  3  4  5  6  7
Next delMin:         x  7  8 16 19 11  4  2
                     0  1  2  3  4  5  6  7
Final array:         x 19 16 11  8  7  4  2
                     0  1  2  3  4  5  6  7

In-Place Heap Sort



In-place heapsort details

• Final sort ends up in reversed order in array
• Previous slide used min-heap, but sorted sequence is 

in nonincreasing (large to small) order
• For sort in nondecreasing order,

• Use max-heap
• Or reverse the array

• Swap first and last, then second and next-to-last
• n / 2 swaps, each swap 3 assignments
• O(n)

• Use a stack
• 2n pushes and pops
• O(n)
• But needs twice as much memory
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