L12/13 - Heap

7/12/24,7/15/24

Announcements

* QZ04 tomorrow 7/16 (topics)
* EXO7 due tonight
e EXO8 releases after class

* This slide presentation in . pptx format has

animations in slideshow mode (credit: Prof.
Stotts)

https://comp210ss2.github.io/notes/qz04_topics/
https://www.cs.unc.edu/%7Estotts/
https://www.cs.unc.edu/%7Estotts/

PrQueue slides from L11

 See PrQueue slides from L11

* PrQueue is an ADT we will implement with
(binary) heap

https://docs.google.com/presentation/d/1uhC_8wrxh8F5_bGeuucapdLmAFNXu1HV0dtJeHP2YAQ/edit?usp=sharing

Min binary heap (min-heap)

e Structure property - Complete binary tree

* All levels fully filled except possibly the last level,
which is filled from left to right

* Heap-order property
* Min element at root
* Every child = parent

* Every path from root to leaf is an ordered
(nondecreasing, small to large) list

* Every subtree of heap is also a heap

e VVisualization

https://www.cs.usfca.edu/%7Egalles/visualization/Heap.html

Structure property (complete BT)

Not
O complete

Complete
binary tree

Binary Heap

Heap-order property

Min at root

every child >= parent

every path root to leafis an ordered
sequence small to large

Heap-order property

N

16

/ \

31 1 8 Every subtree is a min-heap

Why do we want our heap to be a complete BT? What is a benefit (try to recall from yesterday)?

A complete BT remains balanced

Complete BT is balanced (AVL
definition, |h -hg| = 1), leading to
worst-case O(log n) time
complexities instead of O(n) like
degenerate BST

Complete BT allows array
representation of heap with
formulas for indices of parent
and child of node i, shown on
next slide

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Implementation

* Another benefit of structure property: allows very
efficient representation with an array
* Leave slot O unused (startat 1)
e Store node value as array element

e For node in sloti

* Parentis at [i/ 2] (floor, int division)
* Left child at 2i
* Right child at 2i+1

* Array representation => Node class not needed
(save memory)

Example

To fill array, breadth-first across tree

rootinslot1:3

then level 1 inslots 2,3:7, 4

/ \ / \ 11 level 2 in slots 4,5,6,7: 16,12,11,9
next level in slots 8,9, 10...15: 31,18,21
Next item causes slot 11 to fill

3 7 16 | 12 11 9 31 18 21 .

0 1 2 4 5 6 7 8 9 10 11

/\ 11/\

Example

To infer tree structure from array
nodeinslot1:3

Parent: floor(1/2) is O (root, no parent)
Lchild: 2*1is 2, slot2 has 7

Rchild: (2*1)+1is 3, slot 3has 4

12

11 9 31 | 18 21

Example

To infer tree structure from array
nodeinslot4is 16

Parent: floor(4/2) is 2, slot2 has 7
Lchild: 4*2 is 8, slot 8 has 31

Rchild: (4*2)+1is 9, slot9 has 18

16 | 12

11

9 31 | 18 21

/\
/\ 11/\

/\/

Example

nodeinslot4is 16

Parent: floor(4/2) is 2, slot 2 has 7
Lchild: 4*2is 8, slot 8 has 31
Rchild: (4*2)+1is 9, slot9 has 18

parent L-child R-child
N /\ A A
3|7 | a 16|12 11| 9| 31|18 | 21
0o 1 \3/ 3 4/ 5 6

7 W\gj 10 11

N N AN

half back

double forward

Insert

Next item causes slot 11 to fill

this maintains structure property

insert (17)

16 12 11 9 still has heap-order property ?
/ We are good
31 18 21 (by luck of it being 17, > parent 12)
3 |7 |4 |16 |12 |11]| 9 | 31|18 [21 .

0 1 2 3 4 5 6 7 8 9 10 11

Insert... what if ?

insert(10)

7 / \ still has heap-order property ?
/ \ We are not good

12 11 9 (since 10 < parent12)

@ swap 10 with parent 12
31 18 21 Good here

And good here

3 7 4 16 | 12 11 9 31 | 18 21 .

0 1 2 3 4 5 6 7 8 9 10 11

Slot 11 parentis floor(11/2) =5

Swap-Up the Value

insert(2)

. / \ A Check for heap-order, swap upwards
/ \ / \ repeat until we get it
11 9

In the array representation...

/ \ / \ Slot 11 parentis floor(11/2) =5

31 18 21 2 Slot 5 parent s floor(5/2) =2
Slot 2 parent is floor(2/2) = 1

3 7 4 16 | 12 11 9 31 | 18 21 .

0 1 2 3 4 5 6 7 8 9 10 11

Slot 11 parentis floor(11/2) =5

Start with an empty minimum binary heap and insert the following values in this order
(separate inserts): 25, 6, 17, 8, 5, 12, 7, 22, 3. Which of the following is correct for the order of
elements in the heap array (smallest index to largest)?

3,5,6,7,8,12,17,22,25
0%

v 3,57,6,8,17,12,25,22
0%

3,7,5,12,17,8,6,22, 25

0%
3,5,6,25,22,8,7,17,12

0%
None of the above

0%

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Alternate array representation —
use index 0

* Why leave slot O unused? Wastes space?

* |[f we used slot O,

* For node in slot i
* Parentis at|(i-1) / 2] (floor, int division)
* Left child at 2i +1
* Right child at 2i+2

* Our previous formulas (leaving 0 unused) were

* Fornode insloti
* Parentis at |i/2]
* Leftchild at 2i
* Right child at 2i+1

Heap: Based on the difference between the parent/child formulas, why leave slot 0 of the array
unused?

Easier formulas for parent and child indexing?

Easier formulas for parent and child index of node i
Also, faster for computer to compute

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Insert code details

* Bubble up element
* Each swap takes 3 assignments (temp variable)
* O(log n) swaps
* O(3log N)=0(logn)

* Alternatively, “bubble-up the hole” to avoid
swaps, as shown on next slides

/16\ /12\ 11 9
31 18 21 temp
22

Bubble-up the hole

insert(2)

Check for heap-order, if 2 were putin

the hole

Move parent down into hole,
check 2 again, and again

In the array representation
Move values into the hole,
hole moves toward slot 1

11

31 | 18

| |

8 9 10 11

Insert time complexity

* Put new value in next open slot in array/tree
 Swap/bubble up towards root until heap-order is
achieved

* Worst-case O(log N) as it follows path to root
(height)

Insert average case O(1)!

e insert average-case O(1)!

* |nshort, ¥2to 34 of nodes are in the bottom 2 layers
* New elements will probably end up at bottom 2 layers or near

* We consider bottom 2 layers, not bottom layer only, because bottom layer of
complete tree may have only one element

* To make the rest of this analysis easier, assume the tree is perfect so that 2
of nodes are leaves
* Leavestend to be larger due to heap-order

* If we assume (for now) the leaves are the largest elements in the heap, then the
probability that the new element will be a leaf (upper half of values) is 0.5

* Otherwise, suppose the new element will be in the second-to-last layer, with
probability 0.25

* Full second to last-layer has 2 the nodes of full last layer
* Compute expected value
* Expected number of comparisonsis 1(0.5) + 2(0.25) + 3(0.125) + ... =2

* Previous assumption that the new element will be a leafis 0.5 is false (slightly less),
but still bounded by a constant, so the reasoning holds. Also may not be the case that
the tree is perfect

* Average number of comparisonsfor insert is 2.67, O(1)

Show that for a perfect binary tree, when height is large, the proportion of nodes in the bottom
2 layers is roughly 3/4.

» Perfect BT of height h has 2" nodes in bottom layer
» Perfect BT of height h has 2"'-1 nodes

* lIgnoring the -1 (negligible difference for large h), 72 of a perfect BT’s nodes are
in the bottom layer

 Thus, %2 (2) = V4 of a perfect BT’s nodes are in the layer above
° 1/2 + % = 3A1
tree-1 tree-2 tree-3

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

getMin time complexity

* O(1)

e Read the value at root

delMin

* Delete the minimum (root node) of the min heap and
ensure that the new minimum bubbles to the root

* Remove root node val (it is min val)
e Leaves a “hole” at root node

* Pull outvalin last leaf (eliminates a node)

* See ifitfitsin root hole
* |f so, put leaf val into root hole
* If not, move hole down to smaller child
* Repeat

N,
/" \

16/\7
31/ }8 21/ \12

11

temp

9

delMin Example

delMin ()
Remove root value
Save out last element

Bubble hole down from root,
swapping with smaller child
Stop when last element causes
heap-orderin the hole

Array representation

16

11 9 31 | 18 21 | 12

6 7 8 9 10 11

Do a single deleteMin on this min-heap. Which of the following is correct for the order of
elements in the heap array (smallest index to largest left to right) after this operation?

0 5,6,7,8,12,17,22,25
R 50%

5,7,6,12,17,8,22,25

e o)

5,6,22,25,8,7,17,12

0%
®5,6,7,22,8,17,12,25
G 50
None of the above
0%

2 2

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

delMin time complexity

* Worst-case O(log n)
* Remove root node: O(1)

* Save out last element: O(1)
* Bubble down the hole: O(log N)

* One copy per bubble move
* +1 at end for copying temp value into hole

 Swap down method: O(log N)
e 3 assigns per swap, O(log N) swaps
* O(3logN)is O(log N)

IncreaseKey/decreaseKey

* Find the tree element with the key
* Change priority by adding some increment

 Swap/bubble down (with smaller child) toward
leaves until heap-order is achieved
* Worst-case O(log N) as it follows path root to leaf
(height)

* For decreaseKey, bubble up toward root

- \ increaseKey Example

/ \, /\
11 19 increaseKey(curPriority, delta)
/ \ / \ increaseKey(6, 8)

31 18 21
Find element with priority 6

/ \ Bump up by delta 8 to 14
4\ Bubble hole down from elt
6/ \8 / Stop when heap-order is restored
11 19
AWA 2
31 18 21 10
/ N /N /\ /\
11 19 11 9
AVAY AWAY

31 18 21 18 21

0(1)

0%
0(logn)

0%

v o) 0%

O(nlogn)

0%
0(n?)

0%

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

IncreaseKey issues

* As we just saw, can be worst-case O(n) to find
element with some priority

* Tospeed up £findto O(1), can use a HashMap
along with the heap
* HashMap is similar to Python dict
Attach unique data field (id) to each node
Find node by id
Key isid, value is array index
Now finding is O(1), but still O(log n) cost for bubbling

Heap time complexities

insert

delMin

getMin

find(priority)
incKey(curPriority, delta)

O(1)
O(log n)
O(1)
O(n)
O(n) or O(log n)
(optimized)

nis the number of nodes

O(n) or O(log n)
(optimized)

Why is it worst-case O(log n) to insert and remove from a heap but O(n) worst-case to do the
sameon a BST?

* Degenerate BST has O(n) insert and
remove because heightisn—-1, not
log(n). Insert and remove thus
function similarly to linked list
insert/remove
* Heapis complete, thus balanced
(AVL)
* No degenerate case
 Heightis always [log,(n) | Nobody has responded yet.

* Insert and remove worst-case
O(log n) Hang tight! Responses are coming in.

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Heap: why is insert average O(1) but delMin average O(log n) when both perform roughly the
same bubbling strategy?

* Insertavg O(1) reasoning shown on
previous slide

* Insert bubbles up starting from
bottom layer, and most nodes are at
the bottom. On average, won’t have
to go far

* delMin always bubbles down
starting from the root, but m
nodes should be near the bo%ﬁc))%r%dy TSR

Hang tight! Responses are coming in.

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Heap limitations

* Although heap has much faster getMin than
BST, it has less sort information

 Can’t get full sort out of heap directly like a BST
with in-order traversal

* How to sort with heap?
* Recall, quicksort and mergesort average case O(n log
n)
» BST sort average O(n log n), worst O(n?)

Sorting with heap (naive)

* Worst-case
* insert O(log n)
Insert n items O(n log n)
To get sorted sequence, delMin ntimes
delMinis O(logn)
* Retrieve sequence is O(n log n)
* O(nlogn)+ O(nlogn)=0(n log n) is not practically as
good as BST sort’s average case
* BST sort average-case is O(n log n) + O(n)

Make BHEAP by N Inserts

Insert(6) Insert(12) Insert(9) Insert(4)
6 6 6 6 4
SN AT
12 12 9 12 9 4 9 6 9
/ / /
4 12 12
Insert(5) Insert(3)
4 /) 4
VANV / \ =/ \ = 7 \
6 9 5 9
/\ /\ / \ / / \ / / \ /
12 5 12 6 12 12 12

O(N log N)

Efficient build heap

* There is a way to convert a list of unsorted n
elements to a heap in O(n) time

e Structural property

* Load n elements into array from slot 1 to last (order
unimportant)

* Heap-order
* Callmin-heapify|n/2]|times
 Shown on next slide

Min-heapify(A, i)

* 1 isthe index of the node that we “min-heapify”

* Min-heapifyassumes that the children of i
(left and right) are both min heaps, but 1 may
violate heap order

* Bubble-down node at index i until heap-order is

satisfied
* Similarto deleteMin, must swap with smaller
element

1 1
16 16

i jr/ \;) 1:4/ \131::
AN NG NG 8 N\
14 7 0 3 il 4 7 9 3

s/ \o 10/ 8/ \o 10/

2] 1 2 8 1
(a) ()

1
16

2 3

14/ \ 10 This is max-heap but
NG s N\ ignore, pretend it’s a
8 7 (9 3

s/ \s . 1/ min-heap

2 4 1
ic)

Figure 6.2 The action of MAX-HEAPIFY(A, 2), where A heap-size = 10. The node that poten-
tially violates the max-heap property is shown in blue. (a) The initial configuration, with A[2] at
node i = 2 violating the max-heap property since it 15 not larger than both children. The max-heap
property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the max-heap
property for node 4. The recursive call MAX-HEAPIFY(A, 4) now has i = 4. After A[4] and A[9]
are swapped, as shown in (¢), node 4 is fixed up, and the recursive call MAX-HEAPIFY(A, 9) vields
no further change to the data structure.

Min-heapify

MAX-HEAPIFY(A, i)

= s

S N e R W

10

[= LEFT(i)

r = RIGHT(i)

if | < A heap-size and A[l] > Ali]
largest = |

else largest = i

if r < A.heap-size and A[r| > Allargest]
largest = r

if largest #£ 1
exchange A[i] with A[largest]
MAX-HEAPIFY(A, largest)

This is max-heapify, where we swap
(possibly) with the larger child, then recur.
For min-heapify, simply find the smaller
child and swap (possibly) with that

Min-heapify analysis

MAX-HEAPIFY(A.,1)

1

-] ol B o o

L I s]

10

* Lines1-9are O(1)

| = LEFT(i)

r = RIGHT(i)

if | < A.heap-size and A[l] > A[i]
largest = |

else largest = i

if r < A.heap-size and A[r] > Allargest]
largest = r

if largest # i
exchange A[i]| with A[largest]
MAX-HEAPIFY(A, largest)

* Recursive call on line 10 will operate on a child subtree of size at most 2n/3
* Proofthat children subtrees have size at most 2n/3 is omitted

* Thus,min-heapifyworst-caserecurrenceis T(n) < T(2n/3) + G(1)

* Solution by master theorem (not covered in COMP 210) is O(log n)
* Oruserecursiontree

Efficient build heap

e Start with parent of last node, bubble down (call
min-heapify)as needed

e Go breadth-order backward to root

Buiip-Max-HEAP(A, n)

1 A.heap-size = n

2> fori = |n/2| downto 1
MAaX-HEAPIFY(A.1)

Efficient build heap starts with the parent of the last node (i.e., ignores leaves). What
assumption does the min-heapify algorithm make that makes it unnecessary to run on leaves?

Assumes that node at index i may violate heap-order
l.e., subtree rooted at index i may not be a min-heap
But each leafis a trivial min-heap

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Make BHEAP by Build

We have all values at the start, no need
to do individual insert ops

6 12 9 £ 5 3

0 1 2 3 4 5 6 7 8 9 10 11

Initial tree form

6
1 / \ What array slot is this?
/ \ /9 parent of the last array item
4 5 3

Now bubble down
Start with first non-leaf that has a child

Lastitem (3)isin slot6
Parent of 3 is floor(6/2) which is 9, in slot 3

So start bubble down at item in slot 3.

Bubble Down in Build

Initial tree form

/6\ = _/\ = /fi\l

»9 12 3 =3
/ \ /N / \ /
5 3A’ 4475 9
e N %
Heap we got 3 3
with N separate / \ / \
inserts 5 4 4 6
/ /\ 7/
12 6 9 12 5 9

o J

Bubble Down in Build

Initial tree form

/ 6\9 = o\ = R
/ \ (’/:-\ / / \ /

5 3A’ 44" 5 9

4

Bubble down goes to 3 —

leaf if needed / \ /3\
/\\/) /\ /

5 9 4 5 16

L

Perform the buildMinHeap (efficient build heap algorithm) on the array [25, 6, 17, 8, 5, 12,
7,22, 3] (inthat order). Then list the numbers in the array in order fromindex 1 to 9.

@ @ @ @ Nobody has responded yet.
@ @ Hang tight! Responses are coming in.

@0

3,5,7,6,25,12,17,22,8

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app

buildMinHeap analysis (informal)

* Naive upper bound O(n log n)
* Eachmin-heapify callis worst-case O(log n)
* Build makes O(n) calls
* O(nlogn)

* Tighter upper bound O(n)

* min-heapify’s runtime depends on the height of
the node

* The height of most nodes are small (e.g., V2 to 34 of
nodes are in the bottom 2 layers)
 Similarto insert average case O(1) analysis

* Full proof on CLRS 4 ed. pg. 169

Heapsort time complexity

* Build heap (efficient) - O(n)

* Retrieve sequence by performing delMinn
times - O(n log n)

* O(n log n) + O(n) = O(n log n)

* Theoretically same as BST sort

Real heapsort

* Heapsort can be done in-place (no extra array
memory needed to store results of del1Min)

* delMin removes an element from heap array at
end, leaving an array slot open at end

 Simply put the removed element at array end
(heap last + 1)

* Repeat until heap empty
* Array will contain all elements in reverse order

In-Place Heap Sort

Elements: 7,2, 19, 8,11, 4,16

Initial heap array: 7 219 8 11 4 16
O 1 2 3 4 5 67
Complete Build: 27 4 8 11 19 16
© 1 2 3 4 5 6 7
First delMin: 4 7 16 8 11 19 2
O 1 2 3 4_5-6 7
Next delMin: 7 816 19 11 4 2
© 1 2 3 4 5 6 7
Final array: 1916 11 8 7 4 2
© 1 2 3 4 5 6 7

In-place heapsort detalls

* Final sort ends up in reversed order in array

* Previous slide used min-heap, but sorted sequence is
in nonincreasing (large to small) order

* For sort in nondecreasing order,
* Use max-heap

* Orreverse the array

* Swap first and last, then second and next-to-last
* n/2swaps, each swap 3 assignments
 O(n)
* Use a stack
* 2n pushes and pops
* O(n)
* But needstwice as much memory

	L12/13 – Heap
	Announcements
	PrQueue slides from L11
	Min binary heap (min-heap)
	Structure property (complete BT)
	Binary Heap
	Slide Number 7
	Slide Number 8
	Implementation
	Example
	Example
	Example
	Example
	Insert
	Insert… what if ?
	Swap-Up the Value
	Slide Number 17
	Alternate array representation – use index 0
	Slide Number 19
	Insert code details
	Bubble-up the hole
	Insert time complexity
	Insert average case O(1)!
	Slide Number 24
	getMin time complexity
	delMin
	delMin Example
	Slide Number 28
	delMin time complexity
	increaseKey/decreaseKey
	increaseKey Example
	Slide Number 32
	increaseKey issues
	Heap time complexities
	Slide Number 35
	Slide Number 36
	Heap limitations
	Sorting with heap (naïve)
	Make BHEAP by N Inserts
	Efficient build heap
	Min-heapify(A, i)
	Slide Number 42
	Min-heapify
	Min-heapify analysis
	Efficient build heap
	Slide Number 46
	Make BHEAP by Build
	Bubble Down in Build
	Bubble Down in Build
	Slide Number 50
	buildMinHeap analysis (informal)
	Heapsort time complexity
	Real heapsort
	In-Place Heap Sort
	In-place heapsort details

