
L12/13 – Heap
7/12/24, 7/15/24

Announcements

• QZ04 tomorrow 7/16 (topics)
• EX07 due tonight
• EX08 releases after class
• This slide presentation in .pptx format has

animations in slideshow mode (credit: Prof.
Stotts)

https://comp210ss2.github.io/notes/qz04_topics/
https://www.cs.unc.edu/%7Estotts/
https://www.cs.unc.edu/%7Estotts/

PrQueue slides from L11

• See PrQueue slides from L11
• PrQueue is an ADT we will implement with

(binary) heap

https://docs.google.com/presentation/d/1uhC_8wrxh8F5_bGeuucapdLmAFNXu1HV0dtJeHP2YAQ/edit?usp=sharing

Min binary heap (min-heap)

• Structure property - Complete binary tree
• All levels fully filled except possibly the last level,

which is filled from left to right

• Heap-order property
• Min element at root
• Every child ≥ parent
• Every path from root to leaf is an ordered

(nondecreasing, small to large) list
• Every subtree of heap is also a heap

• Visualization

https://www.cs.usfca.edu/%7Egalles/visualization/Heap.html

Structure property (complete BT)

Binary Heap
Heap-order property

every child >= parent

4

31 18

11 9

3

7

1216

21

Min at root

every path root to leaf is an ordered
sequence small to large

Every subtree is a min-heap

Complete BT is balanced (AVL
definition, |hL-hR| ≤ 1), leading to
worst-case O(log n) time
complexities instead of O(n) like
degenerate BST

Complete BT allows array
representation of heap with
formulas for indices of parent
and child of node i, shown on
next slide

Implementation

• Another benefit of structure property: allows very
efficient representation with an array

• Leave slot 0 unused (start at 1)
• Store node value as array element
• For node in slot i

• Parent is at ⌊i / 2⌋ (floor, int division)
• Left child at 2i
• Right child at 2i+1

• Array representation => Node class not needed
(save memory)

Example

0 1 2 3 4 5 6 7 8 9 10 11 ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

To fill array, breadth-first across tree

root in slot 1: 3

then level 1 in slots 2,3: 7, 4

level 2 in slots 4,5,6,7: 16,12,11,9

next level in slots 8, 9, 10 …15: 31,18,21

Next item causes slot 11 to fill

Example

0 1 2 3 4 5 6 7 8 9 10 11 ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

To infer tree structure from array

node in slot 1: 3

Parent: floor(1/2) is 0 (root, no parent)

Lchild: 2*1 is 2, slot 2 has 7

Rchild: (2*1)+1 is 3, slot 3 has 4

Example

0 1 2 3 4 5 6 7 8 9 10 11 ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

To infer tree structure from array

node in slot 4 is 16

Parent: floor(4/2) is 2, slot 2 has 7

Lchild: 4*2 is 8, slot 8 has 31

Rchild: (4*2)+1 is 9, slot 9 has 18

Example

0 1 2 3 4 5 6 7 8 9 10 11 ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

node in slot 4 is 16

Parent: floor(4/2) is 2, slot 2 has 7

Lchild: 4*2 is 8, slot 8 has 31

Rchild: (4*2)+1 is 9, slot 9 has 18

half back double forward

parent L-child R-child

Insert

0 1 2 3 4 5 6 7 8 9 10 11 ...

4

31 18

11 9

3

7

1216

21

3 7 4 16 12 11 9 31 18 21

Next item causes slot 11 to fill
this maintains structure property

insert (17)

still has heap-order property ?

We are good
(by luck of it being 17, > parent 12)17

17

Insert… what if ?

0 1 2 3 4 5 6 7 8 9 10 11 ...

4

31 18

11 9

3

7

16

21

3 7 4 16 12 11 9 31 18 21

insert (10)

still has heap-order property ?

We are not good
(since 10 < parent 12)

swap 10 with parent 12

Good here
And good here

10

10

12

Slot 11 parent is floor(11/2) = 5

Swap-Up the Value

0 1 2 3 4 5 6 7 8 9 10 11 ...

4

31 18

11 9

3

7

16

21

3 7 4 16 12 11 9 31 18 21

insert (2)

Check for heap-order, swap upwards
repeat until we get it

In the array representation…
Slot 11 parent is floor(11/2) = 5

Slot 5 parent is floor(5/2) = 2
Slot 2 parent is floor(2/2) = 1

2

2

12

Slot 11 parent is floor(11/2) = 5

✓

Alternate array representation –
use index 0
• Why leave slot 0 unused? Wastes space?
• If we used slot 0,

• For node in slot i
• Parent is at ⌊(i-1) / 2⌋ (floor, int division)
• Left child at 2i +1
• Right child at 2i+2

• Our previous formulas (leaving 0 unused) were
• For node in slot i

• Parent is at ⌊i / 2⌋
• Left child at 2i
• Right child at 2i+1

Easier formulas for parent and child index of node i
Also, faster for computer to compute

Insert code details

• Bubble up element
• Each swap takes 3 assignments (temp variable)
• O(log n) swaps
• O(3 log N) = O(log n)

• Alternatively, “bubble-up the hole” to avoid
swaps, as shown on next slides

Bubble-up the hole

0 1 2 3 4 5 6 7 8 9 10 11 ...

2

4

18

11 9

3

7

16

21

3 7 4 16 12 11 9 31 18 21

insert (2)

Check for heap-order, if 2 were put in
the hole

Move parent down into hole,
check 2 again, and again

In the array representation
Move values into the hole,

hole moves toward slot 1

12

temp31
2

Insert time complexity

• Put new value in next open slot in array/tree
• Swap/bubble up towards root until heap-order is

achieved
• Worst-case O(log N) as it follows path to root

(height)

Insert average case O(1)!
• insert average-case O(1)!

• In short, ½ to ¾ of nodes are in the bottom 2 layers
• New elements will probably end up at bottom 2 layers or near
• We consider bottom 2 layers, not bottom layer only, because bottom layer of

complete tree may have only one element
• To make the rest of this analysis easier, assume the tree is perfect so that ½

of nodes are leaves
• Leaves tend to be larger due to heap-order

• If we assume (for now) the leaves are the largest elements in the heap, then the
probability that the new element will be a leaf (upper half of values) is 0.5

• Otherwise, suppose the new element will be in the second-to-last layer, with
probability 0.25

• Full second to last-layer has ½ the nodes of full last layer
• Compute expected value

• Expected number of comparisons is 1(0.5) + 2(0.25) + 3(0.125) + … = 2
• Previous assumption that the new element will be a leaf is 0.5 is false (slightly less),

but still bounded by a constant, so the reasoning holds. Also may not be the case that
the tree is perfect

• Average number of comparisons for insert is 2.67, O(1)

• Perfect BT of height h has 2h nodes in bottom layer
• Perfect BT of height h has 2h+1-1 nodes
• Ignoring the -1 (negligible difference for large h), ½ of a perfect BT’s nodes are

in the bottom layer
• Thus, ½ (½) = ¼ of a perfect BT’s nodes are in the layer above
• ½ + ¼ = ¾

getMin time complexity

• O(1)
• Read the value at root

delMin

• Delete the minimum (root node) of the min heap and
ensure that the new minimum bubbles to the root

• Remove root node val (it is min val)
• Leaves a “hole” at root node

• Pull out val in last leaf (eliminates a node)
• See if it fits in root hole

• If so, put leaf val into root hole
• If not, move hole down to smaller child
• Repeat

delMin Example

0 1 2 3 4 5 6 7 8 9 10 11 ...

3 74 16 11 9 31 18 21

delMin ()

Remove root value

Save out last element

Bubble hole down from root,
swapping with smaller child

Stop when last element causes
heap-order in the hole

Array representation

2

4

31 18

11 9

3

716

21 12

2

temp

12

delMin time complexity

• Worst-case O(log n)
• Remove root node: O(1)
• Save out last element: O(1)
• Bubble down the hole: O(log N)

• One copy per bubble move
• +1 at end for copying temp value into hole

• Swap down method: O(log N)
• 3 assigns per swap, O(log N) swaps
• O(3 log N) is O(log N)

increaseKey/decreaseKey

• Find the tree element with the key
• Change priority by adding some increment
• Swap/bubble down (with smaller child) toward

leaves until heap-order is achieved
• Worst-case O(log N) as it follows path root to leaf

(height)

• For decreaseKey, bubble up toward root

increaseKey Example

increaseKey(curPriority, delta)

increaseKey(6, 8)

Find element with priority 6

Bump up by delta 8 to 14

Bubble hole down from elt
Stop when heap-order is restored

21

4

31 18

11 19

6

816

10

2

21

4

31 18

11 19

14

816

10

2

21

4

31 18

11 9

8

1016

14

2

21

4

31 18

11 19

8

1416

10

2

✓

increaseKey issues

• As we just saw, can be worst-case O(n) to find
element with some priority

• To speed up find to O(1), can use a HashMap
along with the heap

• HashMap is similar to Python dict
• Attach unique data field (id) to each node
• Find node by id
• Key is id, value is array index
• Now finding is O(1), but still O(log n) cost for bubbling

Heap time complexities

Average Worst-case

insert O(1) O(log n)

delMin O(log n) O(log n)

getMin O(1) O(1)

find(priority) O(n) O(n)

incKey(curPriority, delta) O(n) or O(log n)
(optimized)

O(n) or O(log n)
(optimized)

n is the number of nodes

• Degenerate BST has O(n) insert and
remove because height is n – 1, not
log(n). Insert and remove thus
function similarly to linked list
insert/remove

• Heap is complete, thus balanced
(AVL)

• No degenerate case
• Height is always ⌊log2(n)⌋
• Insert and remove worst-case

O(log n)

• Insert avg O(1) reasoning shown on
previous slide

• Insert bubbles up starting from
bottom layer, and most nodes are at
the bottom. On average, won’t have
to go far

• delMin always bubbles down
starting from the root, but most
nodes should be near the bottom

Heap limitations

• Although heap has much faster getMin than
BST, it has less sort information

• Can’t get full sort out of heap directly like a BST
with in-order traversal

• How to sort with heap?
• Recall, quicksort and mergesort average case O(n log

n)
• BST sort average O(n log n), worst O(n2)

Sorting with heap (naïve)

• Worst-case
• insert O(log n)
• Insert n items O(n log n)
• To get sorted sequence, delMin n times
• delMin is O(log n)
• Retrieve sequence is O(n log n)
• O(n log n) + O(n log n) = O(n log n) is not practically as

good as BST sort’s average case
• BST sort average-case is O(n log n) + O(n)

Make BHEAP by N Inserts

6

12

6 6

12 9

6

12 9

4

6

12

94

4

12

96

4

12

96

5

4

12

95

6

4

12

95

6 3

4

12

35

6 9

3

12

45

6 9

Insert(6) Insert(12) Insert(9) Insert(4)

Insert(5) Insert(3)

O(N log N)

Efficient build heap

• There is a way to convert a list of unsorted n
elements to a heap in O(n) time

• Structural property
• Load n elements into array from slot 1 to last (order

unimportant)

• Heap-order
• Call min-heapify ⌊n / 2⌋ times

• Shown on next slide

Min-heapify(A, i)

• i is the index of the node that we “min-heapify”
• Min-heapify assumes that the children of i

(left and right) are both min heaps, but i may
violate heap order

• Bubble-down node at index i until heap-order is
satisfied

• Similar to deleteMin, must swap with smaller
element

This is max-heap but
ignore, pretend it’s a
min-heap

Min-heapify

This is max-heapify, where we swap
(possibly) with the larger child, then recur.
For min-heapify, simply find the smaller
child and swap (possibly) with that

Min-heapify analysis

• Lines 1-9 are Θ(1)
• Recursive call on line 10 will operate on a child subtree of size at most 2n/3

• Proof that children subtrees have size at most 2n/3 is omitted
• Thus, min-heapify worst-case recurrence is
• Solution by master theorem (not covered in COMP 210) is O(log n)

• Or use recursion tree

Efficient build heap

• Start with parent of last node, bubble down (call
min-heapify) as needed

• Go breadth-order backward to root

Assumes that node at index i may violate heap-order
 I.e., subtree rooted at index i may not be a min-heap
But each leaf is a trivial min-heap

Make BHEAP by Build

0 1 2 3 4 5 6 7 8 9 10 11 …

Insert 6, 12, 9, 4, 5, 3
We have all values at the start, no need
to do individual insert ops

36 12 9 4 5

Initial tree form

6

4

912

5 3

Now bubble down
Start with first non-leaf that has a child

What array slot is this?
parent of the last array item
Last item (3) is in slot 6
Parent of 3 is floor(6/2) which is 9, in slot 3

So start bubble down at item in slot 3.

Bubble Down in Build

6

4

912

5 3

Initial tree form

6

4

312

5 9

6

12

34

5 9

3

12

64

5 9

3

12

45

6 9

Heap we got
with N separate

inserts

Bubble Down in Build

16

4

912

5 3

Initial tree form

16

4

312

5 9

16

12

34

5 9

3

12

164

5 9

Bubble down goes to
leaf if needed

3

12

94

5 16

3, 5, 7, 6, 25, 12, 17, 22, 8

buildMinHeap analysis (informal)

• Naïve upper bound O(n log n)
• Each min-heapify call is worst-case O(log n)
• Build makes O(n) calls
• O(n log n)

• Tighter upper bound O(n)
• min-heapify’s runtime depends on the height of

the node
• The height of most nodes are small (e.g., ½ to ¾ of

nodes are in the bottom 2 layers)
• Similar to insert average case O(1) analysis

• Full proof on CLRS 4 ed. pg. 169

Heapsort time complexity

• Build heap (efficient) - O(n)
• Retrieve sequence by performing delMin n

times - O(n log n)
• O(n log n) + O(n) = O(n log n)

• Theoretically same as BST sort

Real heapsort

• Heapsort can be done in-place (no extra array
memory needed to store results of delMin)

• delMin removes an element from heap array at
end, leaving an array slot open at end

• Simply put the removed element at array end
(heap last + 1)

• Repeat until heap empty
• Array will contain all elements in reverse order

Elements: 7, 2, 19, 8, 11, 4, 16

Initial heap array: x 7 2 19 8 11 4 16
 0 1 2 3 4 5 6 7
Complete Build: x 2 7 4 8 11 19 16
 0 1 2 3 4 5 6 7
First delMin: x 4 7 16 8 11 19 2
 0 1 2 3 4 5 6 7
Next delMin: x 7 8 16 19 11 4 2
 0 1 2 3 4 5 6 7
Final array: x 19 16 11 8 7 4 2
 0 1 2 3 4 5 6 7

In-Place Heap Sort

In-place heapsort details

• Final sort ends up in reversed order in array
• Previous slide used min-heap, but sorted sequence is

in nonincreasing (large to small) order
• For sort in nondecreasing order,

• Use max-heap
• Or reverse the array

• Swap first and last, then second and next-to-last
• n / 2 swaps, each swap 3 assignments
• O(n)

• Use a stack
• 2n pushes and pops
• O(n)
• But needs twice as much memory

	L12/13 – Heap
	Announcements
	PrQueue slides from L11
	Min binary heap (min-heap)
	Structure property (complete BT)
	Binary Heap
	Slide Number 7
	Slide Number 8
	Implementation
	Example
	Example
	Example
	Example
	Insert
	Insert… what if ?
	Swap-Up the Value
	Slide Number 17
	Alternate array representation – use index 0
	Slide Number 19
	Insert code details
	Bubble-up the hole
	Insert time complexity
	Insert average case O(1)!
	Slide Number 24
	getMin time complexity
	delMin
	delMin Example
	Slide Number 28
	delMin time complexity
	increaseKey/decreaseKey
	increaseKey Example
	Slide Number 32
	increaseKey issues
	Heap time complexities
	Slide Number 35
	Slide Number 36
	Heap limitations
	Sorting with heap (naïve)
	Make BHEAP by N Inserts
	Efficient build heap
	Min-heapify(A, i)
	Slide Number 42
	Min-heapify
	Min-heapify analysis
	Efficient build heap
	Slide Number 46
	Make BHEAP by Build
	Bubble Down in Build
	Bubble Down in Build
	Slide Number 50
	buildMinHeap analysis (informal)
	Heapsort time complexity
	Real heapsort
	In-Place Heap Sort
	In-place heapsort details

